some basics

A sequence $\left\{a_{n}\right\}_{0}^{+\infty}=a_{0}, a_{1}, a_{2}, \ldots$ converges to L if

$$
\lim _{n \rightarrow+\infty} a_{n}=L
$$

More formally, a sequence $\left\{a_{n}\right\}_{0}^{+\infty}$ converges to L if, given an $\epsilon>0$, there exists an N such that for all $n>N,\left|a_{n}-L\right|<\epsilon$.

A sequence $\left\{a_{n}\right\}_{0}^{+\infty}=a_{0}, a_{1}, a_{2}, \ldots$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \geq 0$.

A sequence $\left\{a_{n}\right\}_{0}^{+\infty}=a_{0}, a_{1}, a_{2}, \ldots$ is strictly increasing if $a_{n}<a_{n+1}$ for all $n \geq 0$.

A sequence $\left\{a_{n}\right\}_{0}^{+\infty}=a_{0}, a_{1}, a_{2}, \ldots$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \geq 0$.

A sequence $\left\{a_{n}\right\}_{0}^{+\infty}=a_{0}, a_{1}, a_{2}, \ldots$ is strictly decreasing if $a_{n}>a_{n+1}$ for all $n \geq 0$.

A sequence $\left\{a_{n}\right\}_{0}^{+\infty}=a_{0}, a_{1}, a_{2}, \ldots$ is monotonic if it is either increasing or decreasing.

A series is writeen this way:

$$
\sum_{n=0}^{+\infty} a_{n}, \text { which means } a_{0}+a_{1}+a_{2}+\cdots
$$

$a_{0}, a_{1}, a_{2}, \ldots$ is called the sequence of underlying terms.
There are two sequences associated with every series:
The sequence $\left\{s_{n}\right\}_{0}^{+\infty}=s_{0}, s_{1}, s_{2}, \ldots$, where

$$
\begin{aligned}
& s_{0}=a_{0} \\
& s_{1}=a_{0}+a_{1} \\
& s_{2}=a_{0}+a_{1}+a_{2}
\end{aligned}
$$

$$
\vdots
$$

$$
s_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}
$$

$$
s_{n+1}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}+a_{n+1}
$$

is the sequence of partial sums.
A series converges if and only if its sequence of partial sums converges.

