world of series

1. Determine whether or not the series converges. If the series converges, then find its sum.
(a)

$$
\sum_{k=0}^{\infty} 2\left(\frac{2}{3}\right)^{k}
$$

(b)

$$
\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k+2}
$$

(c)

$$
\sum_{k=1}^{\infty}\left(-\frac{3}{2}\right)^{k}
$$

(d)

$$
\sum_{k=0}^{\infty} 5^{3 k} 7^{1-k}
$$

2. In each part, find all values of c for which the series converges, and find the sum of the series (the sum will still have a " c " in it).
(a)

$$
c-c^{3}+c^{5}-c^{7}+c^{9}-\cdots
$$

(b)

$$
e^{-c}+e^{-2 c}+e^{-3 c}+e^{-4 c}+e^{-5 c}+\cdots
$$

3. Show that

$$
\sum_{k=1}^{\infty} \frac{2}{k^{2}+2 k}=\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right)=\frac{3}{2}
$$

