Here the b_n are growing MUCH faster then the a_n, so if the b-series converges the a-series converges

$$\begin{array}{c} \underbrace{\operatorname{C}} & \underbrace{\operatorname{C}}_{n=1}^{n} & \frac{\operatorname{A}^{n}}{\operatorname{n}^{4} - \operatorname{n} + 1} \\ \text{Does this series converge?} \\ \text{trink is section, this about the terms as n grows, in which case...only the leading terms will matter $\mathcal{X} = \frac{\operatorname{A}^{n}}{\operatorname{n}^{4}} = \frac{\operatorname{I}}{\operatorname{I}_{2}} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{n \neq 0} & \underbrace{\operatorname{Converse}_{n \neq 0}}_{p=1} \\ \begin{array}{c} \operatorname{I}_{n} & \operatorname{Converse}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n}}_{p=2} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n}}_{p=2} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n}}_{p=2} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Converse}_{p=2} & \underbrace{\operatorname{I}_{n \neq 0}}_{n \neq 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Converse}_{p=2} & \underbrace{\operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to 0} \\ \end{array} \\ \begin{array}{c} \operatorname{Converse}_{p=2} & \underbrace{\operatorname{Convers}_{p=2}}_{n \to$$$

How to deal with suries that are not always positive
Def: absolute convergence
The series
$$\sum an$$
 converge absolutely is $\sum |a_n|$ converge.
Ex. $1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \frac{1}{36} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ Does it
 $\sum \left\lfloor \frac{(-1)^{n+1}}{n^2} \right\rfloor = \sum \frac{1}{n^2}$ converges $(p - test)$
For "alternating series" — its "hardor" for a series to converge absolutely.
For "alternating series" — its "hardor" for a series to converge absolutely.
 $\frac{1}{16} + \frac{1}{\sqrt{1}} = \frac{1}{n^4}$ converge? The Absolute Convergence (mptes Convergence)
 $\frac{1}{16} + \frac{1}{\sqrt{1}} = \frac{1}{n^4}$ converge? Absolute Convergence (mptes Convergence)
 $\frac{1}{16} + \frac{1}{\sqrt{1}} = \frac{1}{n^4}$ converge?
Ex. Does $\frac{\infty}{n=1} - \frac{(-1)^{n+1}}{n^4}$ converge?
 $\frac{\infty}{n=1} + \frac{1}{\sqrt{1}} + \frac{1}{$