
. . . last tests . . .

1. Use the ratio test to determine whether or not the series
converges. If the test is inconclusive, then say so.
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The Ratio Test is inconclusive. Note - the Ratio Test will be incon-
clusive for any series where the sequence of underlying terms looks
like a rational function. Limit Comparison Test with the appropri-
ate p-series will crack the convergence / divergence questions . . . .

2. Use the root test to determine whether or not the series con-
verges. If the test is inconclusive, then say so.
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diverges by the Root Test. Note that you

could also use the Divergence Test.
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converges by the Root Test.


