1. Use the ratio test to determine whether or not the series converges. If the test is inconclusive, then say so.
(a)

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{3^{k}}{k^{2}} \\
\lim _{k \rightarrow+\infty} \frac{\frac{3^{k+1}}{(k+1)^{2}}}{\frac{3^{k}}{k^{2}}}=\lim _{k \rightarrow+\infty} \frac{3^{k} \cdot 3}{k^{2}+2 k+1} \cdot \frac{k^{2}}{3^{k}}=\lim _{k \rightarrow+\infty} \frac{3 k^{2}}{k^{2}+2 k+1}= \\
\lim _{k \rightarrow+\infty} \frac{6 k}{2 k+2}=\lim _{k \rightarrow+\infty} \frac{6}{2}=3>1
\end{gathered}
$$

Therefore, the seres $\sum_{k=1}^{\infty} \frac{3^{k}}{k^{2}}$ diverges by the Ratio Test.
(b)

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{k+10}{k^{2}+2} \\
\lim _{k \rightarrow+\infty} \frac{\frac{(k+1)+10}{(k+1)^{2}+2}}{\frac{k+10}{k^{2}+2}}=\lim _{k \rightarrow+\infty} \frac{k+11}{k^{2}+2 k+3} \cdot \frac{k^{2}+2}{k+10}= \\
\lim _{k \rightarrow+\infty} \frac{k^{3}+11 k^{2}+2 k+22}{k^{3}+12 k^{2}+23 k+30}=\lim _{k \rightarrow+\infty} \frac{3 k^{2}+22 k+2}{3 k^{2}+24 k+23}= \\
\lim _{k \rightarrow+\infty} \frac{6 k+22}{6 k+24}=\lim _{k \rightarrow+\infty} \frac{6}{6}=1
\end{gathered}
$$

The Ratio Test is inconclusive. Note - the Ratio Test will be inconclusive for any series where the sequence of underlying terms looks like a rational function. Limit Comparison Test with the appropriate p-series will crack the convergence / divergence questions
2. Use the root test to determine whether or not the series converges. If the test is inconclusive, then say so.
(a)

$$
\sum_{k=1}^{\infty}\left(\frac{k}{2500}\right)^{k}
$$

$$
\lim _{k \rightarrow+\infty} \sqrt[k]{\left(\frac{k}{2500}\right)^{k}}=\lim _{k \rightarrow+\infty} \frac{k}{2500}=+\infty>1
$$

The series $\sum_{k=1}^{\infty}\left(\frac{k}{2500}\right)^{k}$ diverges by the Root Test. Note that you could also use the Divergence Test.
(b)

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{k}{3^{k}} \\
\lim _{k \rightarrow+\infty} \sqrt[k]{\frac{k}{3^{k}}}=\lim _{k \rightarrow+\infty} \frac{\sqrt[k]{k}}{3}=\frac{1}{3}<1
\end{gathered}
$$

The series $\sum_{k=1}^{\infty} \frac{k}{3^{k}}$ converges by the Root Test.

