
last one - alternating series test

1. Use the alternating series test to determine whether or not
the following series are convergent.
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Note the following:
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the Althernating Series Test.
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Consider the series without the alternating signs - i.e. does∑
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2. Give an example of . . .
a. an absolutely convergent alternating series.
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b. a conditionally convergent alternating series.
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c. a divergent alternating series.
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d. a divergent alternating series with limn→+∞ an = 0.

2,−1, 1,−1

2
,
2

3
,−1

3
,
2

4
,−1

4
, . . .


