last one - alternating series test

1. Use the alternating series test to determine whether or not
the following series are convergent.
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Since the sequence of underlying terms, {kQ—H}l , 1s a decreasing

sequence that converges to zero, the series y - | % converges by
the Althernating Series Test.
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Consider the series without the alternating signs - i.e. does

Sk converge? Apply Ratio Test . . . .
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Therefore the series Zzil(—l)k“\k/E diverges by the Divergence
Test.

2. Give an example of . . .
a. an absolutely convergent alternating series.
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c. a divergent alternating series.
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d. a divergent alternating series with lim,, .., a,, = 0.
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