
mono a mono

1. Use the recommended method to show that the given sequence
is eventually strictly increasing or eventually strictly decreasing. De-
termine whether or not the sequence converges. If the sequence
converges, find the limit.
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=⇒ sequence is strictly increasing
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=⇒ the sequence is eventually strictly decreasing

(c) differentiation {
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=⇒ The function f(x) = tan−1 x is strictly increasing,

so the related sequence is strictly increasing.

2. Suppose that {an} is a monotone sequence such that−1 ≤ an ≤ 1.
Must the sequence converge? If so, what can you say about the
limit?

Answer: Yes, the sequence converges to some value in [−1, 1].

3. Suppose that {bn} is a monotone sequence such that bn ≤ 5.
Must the sequence converge? If so, what can you say about the
limit?

No, it doesn’t have to converge. Example: {−n}∞1


