mono a mono

1. Use the recommended method to show that the given sequence
is eventually strictly increasing or eventually strictly decreasing. De-
termine whether or not the sequence converges. If the sequence

converges, find the limit.
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= the sequence is eventually strictly decreasing

(b) ratio

(c) differentiation
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— The function f(x) = tan™'z is strictly increasing,
so the related sequence is strictly increasing.
2. Suppose that {a, } is a monotone sequence such that —1 < a,, < 1.
Must the sequence converge? If so, what can you say about the
limit?

Answer: Yes, the sequence converges to some value in [—1,1].

3. Suppose that {b,} is a monotone sequence such that b, < 5.
Must the sequence converge? If so, what can you say about the

limit?

No, it doesn’t have to converge. Example: {—n}$°



