1. Determine convergence/divergence. Indicate which test(s) you are using.

(a)
$$\sum_{k=2}^{\infty} \frac{5k\sqrt{k}}{7k^2 + 5k + 1}$$

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[3]{2k+11}}$$

$$\sum_{k=1}^{\infty} \left[\frac{7}{4} - \frac{\sqrt[k]{4}}{3} \right]^k$$

$$\sum_{k=2}^{\infty} \frac{7k}{k^3 - 1}$$

$$\sum_{k=0}^{\infty} \frac{7^k}{(2k)!}$$

2. Prove the following statement:

If
$$\sum a_n$$
 converges, then $\lim_{n\to+\infty} a_n = 0$

3. Find the value of the convergent series below:

$$\sum_{k=1}^{+\infty} \frac{3^{k+1}}{5^{k-1}}$$

(b) Hint: Write out some partial sums and then take the limit of the k^{th} partial sum.

$$\sum_{k=1}^{+\infty} \frac{2}{n(n+1)}$$

4. Give three examples (each) of (a) divergent alternating series
(b) a conditionally convergent alternating series.
(c) an absolutely convergent alternating series
(d) a decreasing sequence that converges to 7.
(e) a strictly increasing $sequence$ that converges to π .

 ${\bf Scratchwork}$