Exam 2

1. Determine convergence/divergence. Indicate which test(s) you are using.
(a)

$$
\sum_{k=2}^{\infty} \frac{5 k \sqrt{k}}{7 k^{2}+5 k+1}
$$

(b)

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt[3]{2 k+11}}
$$

(c)

$$
\sum_{k=1}^{\infty}\left[\frac{7}{4}-\frac{\sqrt[k]{4}}{3}\right]^{k}
$$

(d)

$$
\sum_{k=2}^{\infty} \frac{7 k}{k^{3}-1}
$$

(e)

$$
\sum_{k=0}^{\infty} \frac{7^{k}}{(2 k)!}
$$

2. Prove the following statement:

$$
\text { If } \sum a_{n} \text { converges, then } \lim _{n \rightarrow+\infty} a_{n}=0
$$

3. Find the value of the convergent series below:
(a)

$$
\sum_{k=1}^{+\infty} \frac{3^{k+1}}{5^{k-1}}
$$

(b) Hint: Write out some partial sums and then take the limit of the $k^{\text {th }}$ partial sum.

$$
\sum_{k=1}^{+\infty} \frac{2}{n(n+1)}
$$

4. Give three examples (each) of . . .
(a) divergent alternating series
(b) a conditionally convergent alternating series.
(c) an absolutely convergent alternating series
(d) a decreasing sequence that converges to 7 .
(e) a strictly increasing sequence that converges to π.

Scratchwork

