Interval of convergence

1. Find the interval of convergence for the following Taylor series:

$$
\frac{1}{6-x}=\frac{1}{4}+\frac{1}{4^{2}}(x-2)+\frac{1}{4^{3}}(x-2)^{2}+\cdots+\frac{1}{4^{n+1}}(x-2)^{n}+\cdots
$$

"Apply" the ratio test
(i) Form the fraction $\left|a_{n+1}\right| /\left|a_{n}\right|$ and simplify as much as possible. (You need to include the power of x.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=
$$

(ii) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=
$$

(iii) Recalling that the limit in (ii) needs to be less than 1 , find the open interval of convergence for the series, in the form $a<x<b$.
(iv) Now "check the endpoints" of the open interval you found for convergence.
2. Find the interval of convergence for the Taylor series:

$$
e^{-x / 3}=1-\frac{1}{3} x+\frac{1}{2!3^{2}} x^{2}+\cdots+\frac{(-1)^{n}}{n!3^{n}} x^{n}+\cdots
$$

"Apply" the ratio test
(i) Form the fraction $\left|a_{n+1}\right| /\left|a_{n}\right|$ and simplify as much as possible. (You need to include the power of x.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=
$$

(ii) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=
$$

(iii) Recalling that the limit in (ii) needs to be less than 1, find the interval of convergence for the series.

