
Interval of convergence

1. Find the interval of convergence for the following Taylor series:
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“Apply” the ratio test . . . .

(i) Form the fraction |an+1|/|an| and simplify as much as possible.
(You need to include the power of x.)∣∣∣∣an+1
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(ii) Evaluate the limit:
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(iii) Recalling that the limit in (ii) needs to be less than 1, find
the open interval of convergence for the series, in the form a < x < b.

(iv) Now “check the endpoints” of the open interval you found
for convergence.



2. Find the interval of convergence for the Taylor series:
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“Apply” the ratio test . . . .

(i) Form the fraction |an+1|/|an| and simplify as much as possible.
(You need to include the power of x.)∣∣∣∣an+1
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(ii) Evaluate the limit:

lim
n→∞
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(iii) Recalling that the limit in (ii) needs to be less than 1, find
the interval of convergence for the series.


