Interval of convergence

1. Find the interval of convergence for the following Taylor series:

$$
\begin{aligned}
\frac{1}{6-x}=\frac{1}{4}+\frac{1}{4^{2}}(x-2) & +\frac{1}{4^{3}}(x-2)^{2}+\cdots+\frac{1}{4^{n+1}}(x-2)^{n}+\cdots \\
& =\sum_{n=0}^{+\infty} \frac{1}{4^{n+1}}(x-2)^{n}
\end{aligned}
$$

"Apply" the ratio test
(i) Form the fraction $\left|a_{n+1}\right| /\left|a_{n}\right|$ and simplify as much as possible. (You need to include the power of x.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{|x-2|^{n+1}}{4^{(n+1)+1}}}{\frac{|x-2|^{n}}{4^{n+1}}}=\frac{|x-2|^{n} \cdot|x-2|}{4^{n} \cdot 4^{2}} \cdot \frac{4^{n} \cdot 4}{|x-2|^{n}}=\frac{|x-2|}{4}
$$

(ii) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-2|}{4}=\frac{|x-2|}{4}
$$

(iii) Recalling that the limit in (ii) needs to be less than 1, find the open interval of convergence for the series, in the form $a<x<b$.

$$
\frac{|x-2|}{4}<1 \Longrightarrow|x-2|<4 \Longrightarrow-4<x-2<4 \Longrightarrow-2<x<6
$$

(iv) Now "check the endpoints" of the open interval you found for convergence.

When $x=6$, the series "in play" is
$\frac{1}{4}+\frac{1}{16}(6-2)+\frac{1}{64}(6-2)^{2}+\frac{1}{256}(6-2)^{3}+\cdots=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\cdots=+\infty$
This series diverges (by Divergence Test) so 6 is not in the interval of convergence.

When $x=-2$, the series "in play" is
$\frac{1}{4}+\frac{1}{16}(-2-2)+\frac{1}{64}(-2-2)^{2}+\frac{1}{256}(-2-2)^{3}+\cdots=\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\cdots=? ?$
This series diverges (by Divergence Test) so -2 is not in the interval of convergence.

Final answer:

$$
\frac{1}{6-x}=\sum_{n=0}^{+\infty} \frac{1}{4^{n+1}}(x-2)^{n} \text { for } x \in(-2,6)
$$

2. Find the interval of convergence for the Taylor series:

$$
\begin{aligned}
e^{-x / 3}=1-\frac{1}{3} x & +\frac{1}{2!3^{2}} x^{2}+\cdots+\frac{(-1)^{n}}{n!3^{n}} x^{n}+\cdots \\
& =\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!3^{n}} x^{n}
\end{aligned}
$$

"Apply" the ratio test
(i) Form the fraction $\left|a_{n+1}\right| /\left|a_{n}\right|$ and simplify as much as possible. (You need to include the power of x.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{|x|^{n+1}}{(n+1)!3^{n+1}}}{\frac{|x|^{n}}{n!3^{n}}}=\frac{|x|^{n} \cdot|x|}{(n+1) n!3^{n} \cdot 3} \cdot \frac{n!3^{n}}{|x|^{n}}=\frac{|x|}{3(n+1)}
$$

(ii) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{3(n+1)}=\frac{|x|}{3}\left[\lim _{n \rightarrow \infty} \frac{1}{n+1}\right]=\frac{|x|}{3} \cdot 0=0
$$

(iii) Recalling that the limit in (ii) needs to be less than 1, find the interval of convergence for the series.

$$
e^{-x / 3}=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!3^{n}} x^{n} \text { for }-\infty<x<+\infty
$$

