Interval of convergence

1. Find the interval of convergence for the following Maclaurin
series:
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“Apply” the ratio test . . . .

(i) Form the fraction |a,1|/|a,| and simplify as much as possible.
(You need to include the power of x - and the absolute value signs.)
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(ii) Evaluate the limit:
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(iii) Recalling that the limit in (ii) needs to be less than 1, find the
open interval of convergence for the series, in the form a < x < b.
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The inberval of convergence for the Maclaurin series for e” is
(—00, +00).
2. Find the interval of convergence for the following Taylor series:
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“Apply” the ratio test . . . .

(i) Form the fraction |a,1|/]a,| and simplify as much as possible.
(You need to include the power of z.)
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(ii) Evaluate the limit:
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(iii) Recalling that the limit in (ii) needs to be less than 1, find the
open interval of convergence for the series, in the form a < x < b.
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(iv) Now “check the endpoints” of the open interval you found

for convergence.
When x = 6, the series “in play” is
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This series diverges (by Divergence Test) so 6 is not in the interval

of convergence.

When x = —2, the series “in play” is
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This series diverges (by Divergence Test) so -2 is not in the interval

of convergence.

Final answer:
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