
Interval of convergence

1. Find the interval of convergence for the following Maclaurin
series:
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“Apply” the ratio test . . . .

(i) Form the fraction |an+1|/|an| and simplify as much as possible.
(You need to include the power of x - and the absolute value signs.)∣∣∣∣an+1
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(ii) Evaluate the limit:
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(iii) Recalling that the limit in (ii) needs to be less than 1, find the
open interval of convergence for the series, in the form a < x < b.
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The inberval of convergence for the Maclaurin series for ex is
(−∞,+∞).

2. Find the interval of convergence for the following Taylor series:
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“Apply” the ratio test . . . .

(i) Form the fraction |an+1|/|an| and simplify as much as possible.
(You need to include the power of x.)∣∣∣∣an+1
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(ii) Evaluate the limit:
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(iii) Recalling that the limit in (ii) needs to be less than 1, find the
open interval of convergence for the series, in the form a < x < b.
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4

< 1 =⇒ |x− 2| < 4 =⇒ −4 < x− 2 < 4 =⇒ −2 < x < 6

(iv) Now “check the endpoints” of the open interval you found
for convergence.

When x = 6, the series “in play” is
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This series diverges (by Divergence Test) so 6 is not in the interval
of convergence.

When x = −2, the series “in play” is
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This series diverges (by Divergence Test) so -2 is not in the interval
of convergence.

Final answer:

1

6− x
=

+∞∑
n=0

1

4n+1
(x− 2)n for x ∈ (−2, 6)


