Interval of convergence

1. Find the interval of convergence for the following Maclaurin series:

$$
\begin{aligned}
e^{x}=1+x+\frac{1}{2!} x^{2}+ & \frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots+\frac{1}{n!} x^{n}+\cdots \\
& =\sum_{n=0}^{+\infty} \frac{1}{n!} x^{n}
\end{aligned}
$$

"Apply" the ratio test
(i) Form the fraction $\left|a_{n+1}\right| /\left|a_{n}\right|$ and simplify as much as possible. (You need to include the power of x - and the absolute value signs.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{|x|^{n+1}}{(n+1)!}}{\frac{\mid x x^{n}}{n!}}=\frac{|x|^{n} \cdot|x|}{(n+1) n!} \cdot \frac{n!}{|x|^{n}}=\frac{|x|}{n+1}
$$

(ii) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=|x| \cdot \lim _{n \rightarrow \infty} \frac{1}{n+1}=|x| \cdot 0=0
$$

(iii) Recalling that the limit in (ii) needs to be less than 1, find the open interval of convergence for the series, in the form $a<x<b$.

$$
\lim _{n \rightarrow+\infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1 \text { for all values of } x \Longrightarrow
$$

The inberval of convergence for the Maclaurin series for e^{x} is $(-\infty,+\infty)$.
2. Find the interval of convergence for the following Taylor series:

$$
\begin{gathered}
\frac{1}{4}+\frac{1}{4^{2}}(x-2)+\frac{1}{4^{3}}(x-2)^{2}+\cdots+\frac{1}{4^{n+1}}(x-2)^{n}+\cdots \\
=\sum_{n=0}^{+\infty} \frac{1}{4^{n+1}}(x-2)^{n}
\end{gathered}
$$

"Apply" the ratio test
(i) Form the fraction $\left|a_{n+1}\right| /\left|a_{n}\right|$ and simplify as much as possible. (You need to include the power of x.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{|x-2|^{n+1}}{4^{(n+1)+1}}}{\frac{|x-2|^{n}}{4^{n+1}}}=\frac{|x-2|^{n} \cdot|x-2|}{4^{n} \cdot 4^{2}} \cdot \frac{4^{n} \cdot 4}{|x-2|^{n}}=\frac{|x-2|}{4}
$$

(ii) Evaluate the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-2|}{4}=\frac{|x-2|}{4}
$$

(iii) Recalling that the limit in (ii) needs to be less than 1, find the open interval of convergence for the series, in the form $a<x<b$.

$$
\frac{|x-2|}{4}<1 \Longrightarrow|x-2|<4 \Longrightarrow-4<x-2<4 \Longrightarrow-2<x<6
$$

(iv) Now "check the endpoints" of the open interval you found for convergence.

When $x=6$, the series "in play" is
$\frac{1}{4}+\frac{1}{16}(6-2)+\frac{1}{64}(6-2)^{2}+\frac{1}{256}(6-2)^{3}+\cdots=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\cdots=+\infty$
This series diverges (by Divergence Test) so 6 is not in the interval of convergence.

When $x=-2$, the series "in play" is
$\frac{1}{4}+\frac{1}{16}(-2-2)+\frac{1}{64}(-2-2)^{2}+\frac{1}{256}(-2-2)^{3}+\cdots=\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\cdots=? ?$
This series diverges (by Divergence Test) so -2 is not in the interval of convergence.

Final answer:

$$
\frac{1}{6-x}=\sum_{n=0}^{+\infty} \frac{1}{4^{n+1}}(x-2)^{n} \text { for } x \in(-2,6)
$$

