Finding Taylor series the "easy"way

$$
\begin{gathered}
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+\cdots+ \\
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots
\end{gathered}
$$

1. Use the above to find the Taylor series at 0 for $e^{2 x^{2}}$.
2. Use the above to find the Taylor series at 0 for

$$
\frac{1}{1-8 x^{3}}
$$

3. Use the series on the previous page to find the Taylor series at 0 for

$$
f(x)=\frac{1}{1-x^{2}}
$$

4. Use $\# 3$ to find the Taylor series at 0 for

$$
g(x)=\frac{x}{1-x^{2}}
$$

5. Use the following series to find the Maclaurin series for $\cos x$:

$$
\sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

. Find the intervals of convergence for \#1:
\#2:
\#3:
\#4:
\#5:

