Exam III, Chapter 8 \& Sections 11.7-11.11

4. The Maclaurin series for the function $\sin x$ is shown below Carefully show that the interval of convergence for the series is $-\infty<x<+\infty$.

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

5. Find the fifth degree Taylor polynomial for the function $f(x)=\sin x+\cos x$.
6. Use the fifth degree Taylor polynomial from problem 5 to estimate $\sin 1+\cos 1$.
7. Use a sixth degree Taylor polynomial to estimate

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

8. Find the Maclaruin series for the funciton $\tan ^{-1} x$. (Derive it - either from Taylor formula (not recommended) or some other method. For example, the power series for the function $1 /(1-x)$ might be helpful.)

Then show that the interval of convergence for the series is $[-1,1]$.

