
Exam III, Chapter 8 & Sections 11.7 - 11.11

4. The Maclaurin series for the function sinx is shown below
Carefully show that the interval of convergence for the series is
−∞ < x < +∞.
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Apply Ratio Test.
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Now take the limit . . . .
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Since this limit is less than 1 regardless of the value of x, the interval
of convergence for the power series is (−∞,+∞).



5. Find the fifth degree Taylor polynomial for the function
f(x) = sinx + cosx.
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we can get (by differentiating)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

+∞∑
n=0

(−1)n

(2n)!
x2n for −∞ < x < +∞

The fifth degree Taylor polynomial for sinx is x − x3
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fifth degree Taylor polynomial for cosx is 1− x2
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Answer: The fifth degree Taylor poly.l (at 0) for sinx + cosx is
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6. Use the fifth degree Taylor poly. from problem 5 to estimate
sin 1 + cos 1.
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7. Use a sixth degree Taylor polynomial to estimate∫ 1
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We are asked to use a sixth degree polynomial, and sinx2 ' x2− 1
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8. Find the Maclaruin series for the funciton tan−1 x. (Derive
it - either from Taylor formula (not recommended) or some other
method. For example, the power series for the function 1/(1 − x)
might be helpful.)

Then show that the interval of convergence for the series is [−1, 1].

From earlier in Chapter 11, we know that
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If x = 0 =⇒ tan−1(0) = C =⇒ C = 0

So the Maclaurin series for tan−1 x is
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Now for the interval of convergence . . . .
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By the Ratio Test, we know that the Maclaurin series for tan−1 x
converges for all x such that |x|2 < 1. That is, we know the series
converges whenever −1 < x < 1.

We also know the series diverges if x < −1 or if x > 1. We need
to check x = −1 and x = 1.

When x = 1, the resulting series is
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This series converges by the Alternating Series Test.



When x = −1, the resulting series is
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This series converges by the Alternating Series Test.

Final Answer:

tan−1 x = x− 1

3
x3 +

1

5
x5 − · · · =

∑ (−1)n

2n + 1
x2n+1 for x ∈ [−1, 1]


