Exam III, Chapter 8 & Sections 11.7 - 11.11

4. The Maclaurin series for the function sinz is shown below
Carefully show that the interval of convergence for the series is
—o0 < x < +400.
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Apply Ratio Test.
First find the ratio |a,41|/|an|.
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Now take the limit . . . .
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Since this limit is less than 1 regardless of the value of z, the interval
of convergence for the power series is (—00, +00).



5. Find the fifth degree Taylor polynomial for the function
f(z) =sinx + cosx.

Since
. a? a2 - (-1" 2n+1
sinx = x—ﬁ—ka—ﬁ—k = nZ:O mx for —oco < x < 400
we can get (by differentiating)
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The fifth degree Taylor polynomial for sinx is x — g—? + ”g—? and the
fiftth degree Taylor polynomial for cosx is 1 — ”;—? + %.

Answer: The fifth degree Taylor poly.l (at 0) for sinz + cosz is
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6. Use the fifth degree Taylor poly. from problem 5 to estimate
sinl + cos 1.
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7. Use a sixth degree Taylor polynomial to estimate

1
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We have from above that
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We are asked to use a sixth degree polynomial, and sin 2% ~ 2% — %xﬁ.

Answer:
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8. Find the Maclaruin series for the funciton tan™!z. (Derive

it - either from Taylor formula (not recommended) or some other
method. For example, the power series for the function 1/(1 — z)
might be helpful.)

Then show that the interval of convergence for the series is [—1, 1].

From earlier in Chapter 11, we know that
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So the Maclaurin series for tan™" z is
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Now for the interval of convergence . . . .
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By the Ratio Test, we know that the Maclaurin series for tan™!

converges for all x such that |z|> < 1. That is, we know the series
converges whenever —1 < z < 1.

We also know the series diverges if x < —1 or if x > 1. We need
to check z = —1 and x = 1.

When x = 1, the resulting series is
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This series converges by the Alternating Series Test.



When x = —1, the resulting series is
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This series converges by the Alternating Series Test.

Final Answer:
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