Exam III, Chapter 8 \& Sections 11.7-11.11

4. The Maclaurin series for the function $\sin x$ is shown below Carefully show that the interval of convergence for the series is $-\infty<x<+\infty$.

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

Apply Ratio Test.
First find the ratio $\left|a_{n+1}\right| /\left|a_{n}\right|$.

$$
\begin{gathered}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\left|\frac{(-1)^{n+1}}{(2(n+1)+1)!} x^{2(n+1)+1}\right|}{\left|\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}\right|}=\frac{(2 n+1)!|x|^{2 n+3}}{(2 n+3)!|x|^{2 n+1}} \\
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(2 n+1)!|x|^{2}}{(2 n+3)(2 n+2)(2 n+1)!}=\frac{|x|^{2}}{(2 n+3)(2 n+2)}
\end{gathered}
$$

Now take the limit

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow+\infty} \frac{|x|^{2}}{(2 n+3)(2 n+2)}=|x|^{2}\left[\lim _{n \rightarrow+\infty} \frac{1}{(2 n+3)(2 n+2)}\right] \\
\lim _{n \rightarrow+\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=|x|^{2} \cdot 0=0
\end{gathered}
$$

Since this limit is less than 1 regardless of the value of x, the interval of convergence for the power series is $(-\infty,+\infty)$.
5. Find the fifth degree Taylor polynomial for the function $f(x)=\sin x+\cos x$.

Since
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$ for $-\infty<x<+\infty$ we can get (by differentiating)
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$ for $-\infty<x<+\infty$
The fifth degree Taylor polynomial for $\sin x$ is $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ and the fifth degree Taylor polynomial for $\cos x$ is $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$.

Answer: The fifth degree Taylor poly.l (at 0) for $\sin x+\cos x$ is

$$
1+x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}
$$

6. Use the fifth degree Taylor poly. from problem 5 to estimate $\sin 1+\cos 1$.

$$
\sin 1+\cos 1 \simeq 1+1-\frac{1}{2}-\frac{1}{6}+\frac{1}{24}+\frac{1}{120}=\frac{83}{60}
$$

7. Use a sixth degree Taylor polynomial to estimate

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

We have from above that

$$
\sin \square=\square-\frac{1}{3!} \square^{3}+\frac{1}{5!} \square^{5}+\cdots
$$

So

$$
\sin x^{2}=\left(x^{2}\right)-\frac{1}{3!}\left(x^{2}\right)^{3}+\frac{1}{5!}\left(x^{2}\right)^{5}+\cdots=x^{2}-\frac{1}{3!} x^{6}+\frac{1}{5!} x^{10}+\cdots
$$

We are asked to use a sixth degree polynomial, and $\sin x^{2} \simeq x^{2}-\frac{1}{6} x^{6}$.
Answer:

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x \simeq \int_{0}^{1} x^{2}-\frac{1}{6} x^{6} d x=\left[\frac{1}{3} x^{3}-\frac{1}{42} x^{7}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{42}=\frac{13}{42}
$$

8. Find the Maclaruin series for the funciton $\tan ^{-1} x$. (Derive it - either from Taylor formula (not recommended) or some other method. For example, the power series for the function $1 /(1-x)$ might be helpful.)

Then show that the interval of convergence for the series is $[-1,1]$.
From earlier in Chapter 11, we know that

$$
\begin{gathered}
\frac{1}{1-\square}=1+\square+\square^{2}+\square^{3}+\cdots \\
\Longrightarrow \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1-x^{2}+x^{4}-x^{6}+\cdots \\
\int \frac{1}{1+x^{2}} d x=\int 1-x^{2}+x^{4}-x^{6}+\cdots d x \\
\tan ^{-1} x=C+x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots \\
\text { If } x=0 \Longrightarrow \tan ^{-1}(0)=C \Longrightarrow C=0
\end{gathered}
$$

So the Maclaurin series for $\tan ^{-1} x$ is

$$
x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
$$

Now for the interval of convergence

$$
\lim _{n \rightarrow+\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow+\infty} \frac{2 n+1}{2 n+3}|x|^{2}=|x|^{2}
$$

By the Ratio Test, we know that the Maclaurin series for $\tan ^{-1} x$ converges for all x such that $|x|^{2}<1$. That is, we know the series converges whenever $-1<x<1$.

We also know the series diverges if $x<-1$ or if $x>1$. We need to check $x=-1$ and $x=1$.

When $x=1$, the resulting series is

$$
\text { (1) }-\frac{1}{3}(1)^{3}+\frac{1}{5}(1)^{5}-\cdots=1-\frac{1}{3}+\frac{1}{5}-\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1}
$$

This series converges by the Alternating Series Test.

When $x=-1$, the resulting series is

$$
(-1)-\frac{1}{3}(-1)^{3}+\frac{1}{5}(-1)^{5}-\cdots=-1+\frac{1}{3}-\frac{1}{5}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{2 n+1}
$$

This series converges by the Alternating Series Test.
Final Answer:

$$
\tan ^{-1} x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots=\sum \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \text { for } x \in[-1,1]
$$

