Section 7.1 :: Basis, Dimension & Properties :: Math 211 :: October 23, 2016

Objective: We will use the concept of a *basis* to define the *dimension* of a subspace

BASIS FOR SUBSPACES

The xy-plane in \mathbb{R}^3 is a subspace consisting of all vectors in \mathbb{R}^3 with z coordinate equal to 0. Notice that recdli the spon of {vi3 $S = \{(1, 0, 0), (0, 1, 0), (1, 1, 0)\}$

is all possible livear combos

spans the
$$xy$$
-plane.

Also notice that if we throw out any one of the vectors in S and get a new set S', the new set still spans the xy-plane.

$$S' = \{(1,0,0), (0,1,0)\}$$

$$S' = \{(1,0,0), (0,1,0)\}$$

$$(b_{1}2,0) = -4(0,1,0) + 6(1,1,0)$$

(6,2,0) = G(1,0,0) + 2(0,1,0) + O(1,1,0)

redundant:

dundani. notile = S is linearly dependent

- 1. Here S spans the xy-plane but is linearly dependent.
- 2. S' also spans the xy-plane but is linearly independent.
- 3. Sets like S' are preferred because they are "the most efficient way to describe every element in a subspace".

subset

Definition. A basis for a subspace V is a linearly independent spanning **ever** of V.

Example. Find a basis of
(a) The x-axis in
$$\mathbb{R}^3$$
 = $\{(x, 0, 0) \mid x \in \mathbb{R}^3, \{(\pi, 0, 0)\}\}$ is basis
one basis is: $\{(1, 0, 0)\}, (x \in \mathbb{R}^3, \{(\pi, 0, 0)\}, (\pi, 0)\} = \{(x, 0, 0)\}$
Not $x \rightarrow \{(1, 1, 0), (0, 1, 0)\}$
basis $\int_{dx(n)} \int_{dx(n)} \int_{dx(n)} \int_{dx(n)} f(x - axi).$

(b) The line through (0,0) in \mathbb{R}^2 intersecting the x-axis at an angle of 45° .

$$\overline{x} = \left\{ \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}, x_1 \in \frac{1}{2} \right\}$$

$$\overline{x} = \left\{ \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}, x_1 \in \frac{1}{2} \right\}$$

$$\overline{x} = \left\{ \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \right\} = 6as\overline{1}$$

(c) The yz-plane in
$$\mathbb{R}^3$$
.

$$\begin{cases} (0, \times, y) \\ (0, \times, y) \\ (0, 0, 1) \end{cases} \qquad \exists - dimining \\ \{ (0, 1, 0), (0, 0, 1) \} \\ \forall (0, 0, 1) \end{cases} \qquad \forall (0, 0, 1) \end{cases}$$

The standard unit vectors

(1,0) and $(0,1) \in \mathbb{R}^2$

and

$$(1,0,0), (0,1,0), (0,0,1) \in \mathbb{R}^3$$

are the standard basis vectors for \mathbb{R}^2 and \mathbb{R}^3 , respectively. We sometimes call them (e_1, e_2, \ldots, e_n) .

Theorem (Row Space Basis). The nonzero row vectors of a matrix M in RREF form a basis for the row space of M.

Theorem (Every subspace has a basis). Although a given subspace of \mathbb{R}^n can have many different bases, the number of vectors in a basis does not change. In other words, if S is a fixed subspace of \mathbb{R}^n any basis for S will have the same number of vectors. The **dimension** of a subspace is the number of vectors in a basis for the subspace.

 \mathcal{D}

2. What is the dimension of the row space of the matrix above?

3. Give two different bases for the xz plane in \mathbb{R}^3 .

4. Give a basis for the span of the following set of vectors.

$$S = \{ (3, -3, 5), (-2, -3, -3), (5, -15, 9) \}$$

What is the dimension of the span(S)?

$$\begin{bmatrix} 3 & -3 & 5 \\ -2 & -3 & -3 \\ 5 & -15 & 9 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ -2 & -3 & -3 \\ 5 & -15 & 9 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ -2 & -3 & -3 \\ 5 & -15 & 9 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ -2 & -3 & -3 \\ 5 & -15 & 9 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ -6 & 15 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 15 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 15 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ -5R_1 + R_3 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ 0 & 15 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ -5R_1 + R_3 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -6 & 2 \\ 0 & 1 & -1/15 \\ 0 & 0 & 0 \end{bmatrix}$$

Basis : $\{ (1, -6, 2), (0, 1, -1/15) \}$
dm = $\lambda = dim (spin (5))$

Example. The orthogonal complement a^{\perp} of the vector a = (1, 2, 3) is the set of vectors $\vec{\mathbf{x}} = (x_1, x_2, x_3)$ of the form

$$1x_1 + 2x_2 + 3x_3 = 0.$$

What is the dimension of (the Hyperplane) a^{\perp} ?

Theorem (2). Let S be a finite set of vectors in a nonzero subspace V of \mathbb{R}^n .

(a) If S spans V but is not linearly dependent you can remove certain vectors from S to obtain a basis for V.

(b) If S is linearly independent but does not span you can add certain vectors to S to obtain a basis for V.

Example. Apply the theorem above to the following two sets of vectors in the subspace \mathbb{R}^3 of \mathbb{R}^3 .

$$(a) V = \{(1,0,1), (0,1,0)\}$$

$$\text{Span} \left(\forall \neq \mathbb{R}^{3}, \\ (\forall) \neq \mathbb{R}^{3}, \\ (\{(1,0,1), (0,1,1), (0,0,1)\} \} \right) = \mathbb{R}^{3}$$

$$\{(1,0,1), (0,1,1), (0,0,1)\}$$

(b)
$$W = \{(1,0,1), (0,1,0), (0,1,1), (1,1,0)\}$$

span (W) = $|\mathbb{R}^{2}$
if I remove any 1, the new set still
span $|\mathbb{R}^{2}$

Theorem (General statements about bases). (a) Every vector is a basis for some subspace.

$$\{(0,0)\}$$
 is a bosts for \overline{D} , to trivial
subspace
 $(1,-1,4)$ is a bosts for $W = \{t_1(1,-1,4)\}$ telk

(b) A set of k linearly independent vectors in a nonzero k-dimensional subspace is a basis.

(c) A set of k vectors that span a nonzero k-dimensional subspace of \mathbb{R}^n must be linearly independent, hence is a basis.

(d) A set of fewer than k vectors in a nonzero k-dimensional subspace cannot span the subspace.

(e) A set with more than k vectors in a nonzero k-dimensional subspace is linearly dependendent.

(f) If $B = \{b_1, b_2, b_3\}$ is a basis for W in \mathbb{R}^n and A is and $n \times n$ matrix with $det(A) \neq 0$, then

$$AB = \{Ab_1, Ab_2, Ab_3\}$$

is also a basis for W.