Section 7.1 :: Basis, Dimension & Properties :: Math 211 :: October 23, 2016

Objective: We will use the concept of a basis to define the dimension of a subspace

BASIS FOR SUBSPACES

The zy-plane in R3 is a subspace consisting of all vectors in R® with z coordinate equal to 0.
Notice that
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Also notice that if we throw out any one of the vectors in S and get a new set S’, the new
set still spans the xy-plane.
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1. Here S spans the zy-plane but is linearly dependent.
2. S’ also spans the zy-plane but is linearly independent.

3. Sets like S’ are preferred because they are “the most efficient way to describe every element
in a subspace”.
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Definition. A basis for a subspace V is a linearly independent spanning &t of V.

Example. Find a basis of
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(b) The line through (0,0) in R? intersecting the x-azxis at an angle of 45°.
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(c) The yz-plane in R3.
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The standard unit vectors
(1,0) and (0,1) € R?

and
(1,0,0),(0,1,0),(0,0,1) € R?

are the standard basis vectors for R? and R3, respectively. We sometimes call them (e1,€2y...,€n).




Theorem (Row Space Basis). The nonzero row vectors of a matriz M in RREF form a basis
for the row space of M.
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1. Find a basis for the row space of
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Theorem (Every subspace has a basis). Although a given subspace of R™ can have many
different bases,@he number of vectors in a basis does not changa In other words, if S is a
fized subspace of R™ any basis for S will have the same number of vectors. The dimension
of a subspace is the number of vectors in a basis for the subspace.

2. What is the dimension of the row space of the matrix above?
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3. Give two different bases for the zz plane in R3.




4. Give a basis for the span of the following set of vectors.

S={(3,-3,5),(-2,-3,-3), (5,-15,9)}.

What is the dimension of the span(S)?
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Example. The orthogonal complement a' of the vector a = (1,2,3) is the set of vectors
X = (x1, 2, x3) of the form

lz; + 229 4+ 323 = 0.
What is the dimension of (the Hyperplane) a*?




Theorem (2). Let S be a finite set of vectors in a nonzero subspace V of R™.

(a) If S spans V but is not linearly dependent you can remove certain vectors from S to
obtain a basis for V.

(b) If S is linearly independent but does not span you can add certain vectors to S to obtain
a basis for V.

Example. Apply the theorem above to the following two sets of vectors in the subspace R3
of R3.

(a) V= {(1707 1)7 (07 170)}
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(b) W ={(1,0,1),(0,1,0),(0,1,1), (1,1,0)}
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Theorem (General statements about bases). (a) Every vector is a basis for some subspace.
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(b) A set of k linearly independent vectors in a nonzero k-dimensional subspace is a basis.

(c) A set of k vectors that span a nonzero k-dimensional subspace of R™ must be linearly
independent, hence is a basis.

(d) A set of fewer than k wvectors in a monzero k-dimensional subspace cannot span the
subspace. -

(e) A set with more than k vectors in a nonzero k-dimensional subspace is linearly depen-
dendent.

(f) If B = {b1,be, b3} is a basis for W in R"™ and A is and n x n matriz with det(A) # 0,
then
AB = {Aby, Aby, Abs}

is also a basis for W.




