

Definition. The column space is the span of the column vectors of A. ~~

Thick i columns are vector.
Ex
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $col(A) = t\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Theorem. A linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent if and only if $\vec{\mathbf{b}}$ is in the column space of \mathbf{A} .

Think: A transforming
$$\overline{x}$$
 into \overline{b} .
Ex. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\overline{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
1. $A\overline{x} = \overline{b}$ is not consistent
2. $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is not in span $\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$

3. Is (0,0,1) in col(**A**)?

4. If **A** is an $m \times n$ matrix, then the solution space of the homogeneous linear system $\mathbf{A}\mathbf{\vec{x}} = \mathbf{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of **A**.

5. Verify that particular solutions to $A\vec{x} = 0$ are orthogonal to the row vectors of A.

	1	2	0]
$\mathbf{A} =$	1	1	1
	0	1	-1

$$\begin{array}{cccc} \overbrace{\begin{array}{c} 2 \\ 0 \end{array} & Specid From f \\ \hline \\ Definition. A diagonal matrix is one where only non-zero entries are found on the diagonal. \\ \begin{pmatrix} 5 & 4 & 0 \\ 0 & 5 & 3 \\ \end{array} & , & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} & , & \begin{pmatrix} 5 & 5 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} & , & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} & , & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} & , & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} & , & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} & , & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} & , & & \\ \hline \\ Scaling \\ Scalin$$

7. These matrices are used to create efficient algorithms for soving matrix equations (computing inverses, etc.) Definition. A symmetric matrix has the property $\mathbf{A}^T = \mathbf{A}$ and (skew-symmetric if $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}$, $A = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$ symmetric $\mathbf{A}^T = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ $-\mathbf{A} = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$

8. If **A** is an invertible symmetric matrix then \mathbf{A}^{-1} is symmetric. Let's prove this.

Facts A is invertible.
$$(A^{-1} exists)$$

A is symmetric $A = A^{T}$
 $(A^{T})^{-1} = (A^{-1})^{T}$
 $(A^{T})(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$
show $(A^{-1})^{T} = A^{-1}$
 $A^{T} = A$ such
 $(A^{-1})^{T} = A^{-1}$
 $(A^{-1})^{T} = A^{-1}$ done.