Theorem. The solution set of $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is the translation of the solution set of $\mathbf{A} \overrightarrow{\mathbf{x}}=\mathbf{0}$ by any $\overrightarrow{\mathbf{x}}_{0}$ where $\mathbf{A} \overrightarrow{\mathbf{x}}_{0}=\overrightarrow{\mathbf{b}}$.

1. Find the general solution to $\mathbf{A} \overrightarrow{\mathbf{x}}=\mathbf{0}$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]\left(\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad x_{1}=-2 x_{2} \\
& x_{1}+2 x_{2}=0 \\
& \left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
\infty
\end{array}\right) \Rightarrow x_{2}^{\infty}-501 / 5 \\
& x_{2}=x_{3}=0
\end{aligned}
$$

Angnouted Matrix

$$
\left(\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
8 \\
-4 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
4 \\
-4
\end{array}\right)
$$

$$
x_{3}=t \quad(\text { free }
$$

$$
A \bar{x}=0 \quad \bar{x}=\left(\begin{array}{c}
-2 t \\
t \\
t
\end{array}\right)=t\left(\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right)
$$

2. Now find the general solution to $\mathbf{A} \overrightarrow{\mathbf{x}}=(0,4,-4)$.

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & =-4 \\
0 & 0 & 0 & 0
\end{array}\right)\left[\begin{array}{l}
x_{3}=t \\
1 \cdot x_{2}-x_{3}
\end{array}=-4\right.
$$

$$
\Rightarrow \quad x_{2}=x_{3}-4=t-4
$$

$$
\bar{x}=\left(\begin{array}{c}
-2 t+8 \\
t-4 \\
t
\end{array}\right)=\left(\begin{array}{c}
-2 t \\
t \\
t
\end{array}\right)+\left(\begin{array}{c}
8 \\
-4 \\
0
\end{array}\right)=\underbrace{}_{\substack{-2 \\
1 \\
1 \\
\hline \\
\text { Sol } \\
t_{0}}} \quad A x=\left(\begin{array}{c}
8 \\
-4 \\
4 \\
-4
\end{array}\right)
$$

$$
A x=0
$$

$$
=\underbrace{A\left(t\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right)}_{-}+A\left(\begin{array}{c}
8 \\
-4 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
4 \\
-4
\end{array}\right)
$$

Definition. The column space is the span of the column vectors of \mathbf{A}.
set of all linear combos
Think: columns are vectors.

$$
\text { Ex. } A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \operatorname{col}(A)=t\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Theorem. A linear system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is consistent if and only if $\overrightarrow{\mathbf{b}}$ is in the column space of \mathbf{A}.
Think: A transforming \bar{x} into \bar{b}.
Ex. $\quad A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \quad \sigma=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

1. $A \bar{x}=\bar{b}$ is not consistat 2. $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is not in $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
2. Is $(0,0,1)$ in $\operatorname{col}(\mathbf{A})$?
3. If \mathbf{A} is an $m \times n$ matrix, then the solution space of the homogeneous linear system $\mathbf{A} \overrightarrow{\mathbf{x}}=\mathbf{0}$ consists of all vectors in \mathbb{R}^{n} that are orthogonal to every row vector of \mathbf{A}.

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
\text { sols space th } A x=0 . \\
x_{3}=t \\
x_{2}=0 \\
x_{1}=0
\end{array} \\
\left.\left.\begin{array}{c}
\begin{array}{l}
\text { Always } \\
\text { this }
\end{array} \\
\begin{array}{c}
\text { opens } \\
\text { for } A \bar{x}=\overline{0} .
\end{array}
\end{array} \begin{array}{l}
0 \\
0 \\
t
\end{array}\right)=t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
\end{gathered}
$$

5. Verify that particular solutions to $\mathbf{A} \overrightarrow{\mathbf{x}}=\mathbf{0}$ are orthogonal to the row vectors of \mathbf{A}.

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

(3.6) Specie Forms

Definition. A diagonal matrix is one whose only non-zero entries are found on the diagonal.

$$
\begin{aligned}
& \left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3 \\
9 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \quad \text { scaling }
\end{aligned}
$$

$$
\begin{aligned}
& \text { by } s \text { in } x \text { dir. } \\
& y \text { in } 4
\end{aligned}
$$

scaling by
5 in all
directund.

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\text { off }- \text { diagond }
$$

6. Powers of diagonal matrices are easy to compute.

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right), A^{2}=\left(\begin{array}{lll}
8 & 0 & 0 \\
0 & 64 & 0 \\
0 & 0 & 125
\end{array}\right) \\
& \left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right)=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 25
\end{array}\right)
\end{aligned}
$$

each entry
gets

Definition. An upper (lower) triangular matrix is a square matrix in which all entries above (below) the diagonal are zero.
upper triangular:
 only non-zeros
appear on
the diag
or above

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 2 & 0 \\
5 & 6 & 3
\end{array}\right)
$$

strictly upper Δ
7. These matrices are used to create efficient algorithms for soving matrix equations (compuling inverses, etc.)

Definition. A symmetric matrix has the property $\mathbf{A}^{T}=\mathbf{A}$ and (skew-symmetric if $\mathbf{A}^{T}=-\mathbf{A}$.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

symmetric

Stent, sum

$$
A=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \left.A^{\top}=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
-A=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)
\end{array}\right) . \begin{array}{c}
\\
-2
\end{array}\right)
\end{aligned}
$$

8. If \mathbf{A} is an invertible symmetric matrix then \mathbf{A}^{-1} is symmetric. Let's prove this.

Facts A is invertible. (A^{-1} exists)
A is sumuetres $\quad A=A^{\top}$
(\&) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$

$$
\left(A^{\top}\right)\left(A^{-1}\right)^{\top}=\left(\frac{A^{-1} A}{I}\right)^{\top}=I^{\top}=I
$$

show $\quad\left(A^{-1}\right)^{\top}=A^{-1}$

$$
A^{\top}=A \quad \text { jct }
$$

$$
\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}
$$

$\uparrow_{\text {sub. }}$

$$
\left(A^{-1}\right)^{\top}=A^{-1}
$$

love.

