The determinant of square matrix is real number, computed using all the entries of the matrix. Every square matrix has one. In many ways they classify or determine the geometry and the solutions associated matrix equations.

Know how to compute determinants of 2x2 and 3x3 matrices by hand. Higher dimensional matrix determinants are calculated similarly. (Every entry gets used, and the det is formed by alternating sums of elementary products

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1.4 - 2.3 = -2$$

3x3 - two ways

If a matrix has a row or column of all zeros, its determinant is zero.

$$\begin{aligned} \begin{pmatrix} 1 & 2 & 3 \\ u & -5 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 3 \\ v & -5 & 0 \end{pmatrix} & dt = 0 \\ 0 + 0 + 0 - 0 - 0 = 0 \\ \begin{pmatrix} 1 & 2 & 3 \\ v & -5 & 0 \\ (1 & -7 & 0 \\ -7 & -9 \end{pmatrix} & \text{If the rows (or columns) of a matrix are linearly dependent, the determinant of the matrix is zero.
$$\begin{aligned} \begin{pmatrix} 1 & 2 & 3 \\ v & -5 & 0 \\ 5 & -7 & -9 \\ (1 & -7 & 0 \\ -7 & -9 \\ -7 & -9 \\ -7 & -9 \\ -7 & -9 \\ -7 & -9 \\ -7 & -10 \\ -7 & -7 \\ -7$$$$

Examples: The identity matrix, 2x2 rotation matrix

Examples: The Identity matrix, 2.82 rotation matrix

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} = 1$$
Fut: $\begin{bmatrix}
dut & q & any & \Delta' | ar & metrix \\
1 & just & product & q & diag, entries
\end{bmatrix}$

$$\begin{bmatrix}
a_1 & u & 0 \\
0 & a_2 & 3 \\
0 & 0 & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & 0 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_2 & a_1 \\
a' & a_3
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_2
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix} = a_1 \begin{bmatrix}
a_1 & a_1 \\
a' & a_1
\end{bmatrix}$$

Fact:

$$det(AB) = det(A) det(B)$$

$$det(AA') = det(A) det(A')$$

$$det(I)$$

$$det(I)$$

$$det(I)$$

$$det(A) = det(A')$$

$$det(A')$$

$$det(A') = det(A'')$$