The determinant of square matrix is real number, computed using all the entries of the matrix. Every square matrix has one. In many ways they classify or determine the geometry and the solutions associated matrix equations.

Know how to compute determinants of 2×2 and 3×3 matrices by hand. Higher dimensional matrix determinants are calculated similarly. (Every entry gets used, and the det is formed by alternating sums of elementary products

$$
\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=1.4-2.3=-2
$$

3×3 - two ways

1. Pick row (or column). Row

$$
\begin{aligned}
& \left.d e t=1 \cdot\binom{(1,1)-\text { ensor }}{4}\left|\begin{array}{ll}
3 & 3 \\
3 & 2 \\
\text { depends }
\end{array}\right| \begin{array}{ll}
2 & -2 \\
2 & 3 \\
2
\end{array}|+1 \cdot| \begin{array}{ll}
2 & 3 \\
2 & 3
\end{array} \right\rvert\, \\
& \begin{array}{c}
\text { entry } \\
\text { end } \\
(1,2) \\
\text { entry }
\end{array} \Rightarrow \text { negative } \\
& =(6-9)-2(4-6)+1(6-6) \\
& =-3-2(-8)=-3+4=\square
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 0 \\
3 & 1 & 5
\end{array}\right|=-4\left|\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right|+0\left|\begin{array}{ll}
1 & 3 \\
3 & 5
\end{array}\right|-\left.\underbrace{0}_{0} \underbrace{1}_{0} \begin{array}{l}
1 \\
3
\end{array} 1\right|^{+}\left(\begin{array}{l}
+-+ \\
-++ \\
+-+
\end{array}\right) \\
& \text { Row } 2=-4(10-3)=-4(7)=-28
\end{aligned}
$$

If a matrix has a row or column of all zeros, its determinant is zero.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
0
\end{array}\right)\binom{1}{0}\left(\begin{array}{ll}
2 & 3 \\
4 & 6 \\
0 & 0
\end{array}\right) \quad \text { d et }=\varnothing \\
& 0+\phi+\infty-\infty-0-\varnothing
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
5 & 7 & 9
\end{array}\right) \quad \begin{array}{l}
\text { Row } 3=\text { Row } 2+\text { Row } 1 \\
\text { If the rows (or columns) of a matrix are linearly } \\
\text { dependent, the determinant of the matrix is zero. }
\end{array} \\
& \text { 1. }\left|\begin{array}{ll}
5 & 6 \\
7 & 9
\end{array}\right|-2\left|\begin{array}{ll}
4 & 4 \\
5 & 9
\end{array}\right|+3\left|\begin{array}{ll}
4 & 5 \\
5 & 7
\end{array}\right| \\
& \begin{aligned}
45-42-2(\underbrace{36-30}_{6}) & +3(28-25) \\
3-12 \xrightarrow[3]{25} & =0 .
\end{aligned} \\
& \begin{aligned}
\left|\left(\begin{array}{lll}
1 & 4 & 5 \\
2 & 5 & 7 \\
3 & 6 & 9
\end{array}\right)\right| & =-4\left(\begin{array}{ll}
2 & 7 \\
3 & 4
\end{array}\right)+5\left|\begin{array}{ll}
1 & 5 \\
7 & 9
\end{array}\right|-6\left|\begin{array}{ll}
1 & 5 \\
2 & 7
\end{array}\right| \\
& =-4(-3)+5(-6)-6(-3)
\end{aligned} \\
& 12-30+15=D
\end{aligned}
$$

FACT:

$$
\operatorname{det}(M)=\operatorname{det}\left(M^{\top}\right) \cdot \text { see examples above } \quad \text { when }\left\{\begin{array}{c}
M \text { has a row/col } \\
\operatorname{det}(M)=0 \text { of zero } \\
\text { The rows/cols of } \\
M \text { are } \\
\text { linearly } \\
\text { clependont. }
\end{array}\right.
$$

EL A he $(1,0,1),(0,1,0),(1,2,3)$ L.I, of L,D. !

$$
\begin{aligned}
& \left|\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 0 & 3
\end{array}\right)\right| \\
& d \text { tu }=\left|\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right|+\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=3-1=2 \\
& \Rightarrow \text { L.Indopentet. }
\end{aligned}
$$

Examples: The identity matrix, 2×2 rotation matrix
$\left|\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right|=1, \quad$ Fact: $\left\{\begin{array}{lll}\text { duet of any D'lar mothy (diagoll) } \\ \underline{\text { is }} & \text { just product of diag sent }\end{array}\right.$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
a_{2} & 0 \\
0 & a_{3}
\end{array}\right|=a_{1}\left(a_{2} \cdot a_{3}\right) \\
& {\left[\left.\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array} \right\rvert\,=\cos ^{2} \theta+\sin ^{2} \theta=1\right.}
\end{aligned}
$$

Notes about det(M)

1. How do elementary row ops affect et? $\quad|k M|=k^{n}|M|$
2. What do a row of zeros do to det?
3. How does $\operatorname{det}(M)$ control if M is invertible?
4. What is $\operatorname{det}(A B)$?
5. What if $\operatorname{det}(A B A \wedge\{-1\})=0$ and A is invertible?

$$
\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right| \longrightarrow\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

if $M=n \times n$ matrix
add rows \Rightarrow preserves dit.

Facts

$$
\begin{aligned}
& \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \\
& \operatorname{det}\left(A \cdot A^{-1}\right)=\operatorname{det}(A) \cdot \operatorname{det}\left(A^{-1}\right) \\
& \operatorname{det}(I) \\
& 1 \\
& =0 \frac{1}{\operatorname{det}(A)}=\operatorname{det}\left(A^{-1}\right)
\end{aligned}
$$

A is
inv,

