See the relationship between vector position and the matrix determinant in R^2
This m-file produces an animation, and requires the m-file PlotVector.m
Contents
Begin with the standard basis
A = eye(2); % j = 1 : Rotatations from 0 to 2pi % j = 2 : Collapse slowly onto same vector (parallel to (1,1)) % j = 3 : Pass through to a change of orientation of basis % Save the animation close all; mov = avifile('SeeDeterminant.avi'); f1 = figure(1); set(f1, 'Position', [0 0 560 420 ] );
Do all transformations in sequence
for j = [1 2 3]
% Rotations if j == 1; % Standard rotation matrix in R^2 R = @(t) [cos(t) -sin(t); sin(t) cos(t)]; % Parameter of rotation T = [0:.5:2*pi]; % Axis Ax = [-2 2 -2 2]; % Collapse elseif j == 2; % Deformation matrix tricks a = @(t) 1*(1-t) + t*sqrt(2)/2; s = sqrt(2)/2; R = @(t) [a(t) t*s; t*s a(t)]; % Parameter of deformation T = [0:.1:1]; % Axis Ax = [-.3 1.3 -.3 1.3]; % Pass to orientation reversing elseif j == 3; % Deformation matrix tricks s = sqrt(2)/2; a = @(t,s) sqrt(2)/2*(1-t) + t; R = @(t) [(1-t)*s a(t); a(t) (1-t)*s ]; % Parameter of deformation T = [0:.1:1]; % Axis Ax = [-.3 1.3 -.3 1.3]; end
Call PlotVector for each transformation
% Plot Settings k = PlotVector(A,'.r',Ax); m = 1; for t = T; tie_tull = title(['Determinant = ',num2str(det(R(t)*A))]); set(tie_tull,'FontSize',20); h = PlotVector(R(t)*A,'.r',Ax); % Display matrix and determinant Matrix_Vectors = R(t)*A Determinant = det(R(t)*A) % Pause for discussion pause(.25); % Grab frame frame = getframe(gcf); mov = addframe(mov,frame); % Clear plot for next transformation delete(h); end
end % Leave the last plot for discussion h = PlotVector(R(t)*A,'.r',Ax); mov = close(mov); % To see the animation again - in MATLAB type: implay('SeeDeterminant.avi')