Exam "should" be out of 60. With a generous curve, it's out of 80.

Name Exam 4 :: Math 271 :: April 26, 2017

INSTRUCTIONS: Choose any seven of the eight problems.

1. Ryan fires a projectile from the ground (height 0) upward at an initial velocity of 480 $\frac{ft}{s}$. Assuming the effect of air resistance is negligible and the effect of gravity is $-32\frac{ft}{sec}$. Answer the following questions.

$$V(0) = 480^{\circ}, \quad a(t) = -32$$

$$U(t) = \int a(t) dt = \int -32 dt = -32t + C$$

$$= -32(0) + 480$$

$$V(0)$$

$$V(t) = -32t + 480$$

$$S(0) = 0$$

$$S(t) = \int V(t) dt = \int -32t + 480 dt = -32t^{2} + 480t + C$$

$$S(t) = -16t^{2} + 480t$$

$$S(t) = -16t^{2} + 480t$$

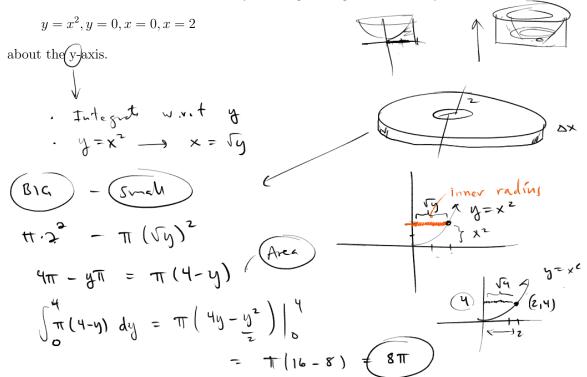
When does the projectile strike the ground?

solve
$$s(t) = 0$$

 $-16t^{2} + 4sot = 0$
 $t^{2} - 3ot = 0$
 $t(t-30) = 0$
 $t = 30$

With what speed does the projectile strike the ground?

$$V(30) = -32(30) + 450 = -450$$


2. Find the average velocity of a projectile whose velocity in $\left(\frac{ft}{sec}\right)$ is given by $v(t) = t^3$ where t is measured in seconds and $t \in [0, 5]$.

Avg
Value
$$\frac{1}{b-a}\int_{a}^{b^*} f(t) dt$$

Avg $= \frac{1}{5-0}\int_{0}^{5} t^3 dt = \frac{1}{4\cdot 5}t^4 = \frac{1}{20}t^4 \int_{0}^{5} = \frac{5^4}{20} \approx 3(.1)$

3. Find the area bound by $y = 8x^2$ and $y = x^2 + 4$. Sketch the region.

$$\int_{a}^{b} x^{2} + 4 - 8x^{2} dx = \int_{a}^{3} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{2} dx = 4x - 7x^{3} \int_{-\frac{2}{37}}^{2} \sqrt{37} + 7x^{3}$$

4. Find the volume of the solid obtained by rotating the region bounded by

5. Find the volume of the solid obtained by rotating the region bounded by

$$y = x^2, y = 0, x = 0, x = 2$$

about the x-axis.