um

$$
f(x)=\frac{6 x+10}{x} \quad f^{\prime}(-1), \quad f^{\prime}(3)
$$

Take the derivative, plug in -1 and then 3

$$
f^{\prime}(x)=\frac{x(6)-(6 x+10)}{x^{2}} \cdot 1=\frac{-10}{x^{2}}=f^{\prime}(x) .
$$

quad forme-

$$
s(t)=68 t-0.83 t^{2}=0
$$

$$
\begin{aligned}
& a t^{2}+b t+c=0 \\
& t=-\frac{b \pm \sqrt{b^{2}-4 a}}{2 a}
\end{aligned}
$$

when will it hit mon?

$$
\underbrace{-0.83}_{a} t^{2}+\underbrace{68 t}_{b}=0
$$

$$
V(t)=s^{\prime}(t)=2(-0.83) t+68
$$

$$
=-1.66 t+68
$$

$$
t=\frac{-68 \pm \sqrt{68^{2}-4(-0.83) \cdot 0}}{2(-0.83)}
$$

 81.927

$$
V(81.927)=\quad \text { velocity of object when it hits ground }
$$

$$
f(x)=-6 x^{2}+4
$$

want: eau of tangent line
need, its slope $\frac{1}{2}$ point on the $\operatorname{lin}=(2,-20)$

$$
f^{\prime}(2)=-24
$$

$$
\begin{aligned}
& x=2 \longrightarrow f(x) \\
& f(2)=-6.4+4=-20 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+20=-24(x-2) \\
& y=-24 x+28
\end{aligned}
$$

$=$ slope of function $@ x=2$

$$
\begin{aligned}
& f(x)=5 \\
& f^{\prime}(x)=0 \\
& f^{\prime}(-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (wow) }=\frac{5 \sin x}{4 \sin x+2 \cos x}=\frac{5 \sin (\pi / 2)}{4 \sin \frac{\pi}{2}+2 \cos \frac{\pi}{2}}=\frac{5.1}{4.1+2.0}=\frac{5}{4} \\
& f^{\prime}(x)=\frac{(4 \sin x+2 \cos x) 5 \cos x-5 \sin x(4 \cos x-2 \sin x)}{(4 \sin x+2 \cos x)^{2}} \\
& x \\
& f^{\prime}(\pi / 2)=.625 \\
& y=f(\pi / 2)=5 / 4
\end{aligned}
$$

\# 8

$$
\begin{aligned}
& f(x)=\underbrace{\sqrt{x}} \sin x \\
& f(x)=x^{\frac{1}{2}} \cdot \sin x \\
& f^{\prime}(x)=\underbrace{\frac{1}{2} x^{-\frac{1}{2}} \cdot \underbrace{\sin x}_{1^{\text {st }}}+x^{\frac{1}{2}} \cdot \cos (x)}_{2^{n d}}
\end{aligned}
$$

product rub

$$
=\frac{\operatorname{sh} x}{2 \sqrt{x}}+\sqrt{x} \cos (x)
$$

A_{13}

$$
y=\frac{1}{4 \sin x+3 \cos x} \quad \begin{gathered}
\text { slope } \\
m_{s} \\
m_{3}
\end{gathered}
$$

Plan. take derivation, plus in $x=0$.
that gives the slope
then jive eqn of live $=-(4 \sin x+3 \cos x)^{-2} \cdot(4 \cos (x) \downarrow)^{-3 \sin (x)}$

$$
\begin{aligned}
& y^{\prime}=-\frac{4 \cos (x)-3 \sin (x)}{(4 \sin (x)+3 \cos (x))^{2}} \\
& y^{\prime}(0)=-\frac{4 \cos (0)-3 \sin (0)}{(4 \sin (0)+3 \cos (0))^{2}}=-\frac{4-3 \cdot 0}{(0+3)^{2}}=-\frac{4}{9} \\
& m=-\frac{4}{9} \\
& (x, y)=\left(0, \frac{1}{3}\right)
\end{aligned}
$$

