Week 10 - Monday
1-Week from wednerduy

1. Homenork PVe
2. Topir for Profect / Annotel Biblis

Quohent Space

Presentations!

- live/synronons ouline
- recordal.

This week!

- F wil trom some of HW assighmants.
' Gradins is cming but slow

$$
30 \sim 10^{+}=380^{+} \text {pages }
$$

External Direct Products a Groups
similar to $\mathbb{R}^{2}, \quad \mathbb{R}^{2}=\underset{\uparrow}{\mathbb{R}} \oplus \mathbb{R} \quad(x, y) \in \mathbb{R}^{2}$.
variable x

Def'n' Let A, B, C be groups w/ $a_{i} \in \mathcal{A}$

$$
\begin{aligned}
& b_{j} \in B \\
& c_{k} \in C
\end{aligned}
$$

$\underbrace{A \oplus B \oplus C}=\{\underbrace{\left(a_{i}, b_{j}, c_{k}\right)} \mid$ for a_{i}, b_{j}, c_{k} above $\}$ external direct product
case)
operation. componentwise multiplication
Ex: $\quad \mathbb{Z}_{\mathbb{+}}^{+} \mathbb{\mathbb { Z }}_{2}^{+}=\left\{(n, a) \mid n \in \mathbb{Z}, a \in \mathbb{Z}_{2}\right\}$
ex, $(1,0),(-5,1),(3,1)$ live here.
group operation: (conponent-wise accretion w) modulo 2 in $\quad 2^{n} \underline{\text { in }}$ cove).

$$
\text { ex: }(1,0)+(-5,1)=(-4,1)
$$

$$
(-5,1)+(3,1)=(-2,2 \mathrm{~mol} 2)=(-2,0)
$$

ex: $e \in \mathbb{Z} \oplus \mathbb{Z}_{2}$
is

$$
e=(0,0)
$$

What's the id elemanil in $A \oplus B \oplus C$?

$$
\left(e_{A}, e_{B}, e_{C}\right)
$$

Ex. $u(3) \oplus u(4)=\{(1,1),(1,3),(2,1),(2,3)\}$
$\begin{array}{cc}\left\{1,23=\mathbb{U}_{2}\right. & \{1,3\} \\ \bmod 3 & \bmod y\end{array} \quad$ ordure \mathbb{Z}_{2} order order 2

$$
|u(3) \oplus u(4)|=|u(3)| \times|u(4)|=4
$$

What grays is
it isomorphic to Cyclic? $\langle(2,3)\rangle=\{(2,3),(1,1)\}$
$(2,3)^{2}=(2,3) \cdot(2,3)=(4 \bmod 3,9 \bmod 4)=(1,1) \quad($ identity $)$
$\therefore \quad(2,3)^{3}=(2,3)^{2} \cdot(2,3)=(2,3) \quad \Rightarrow|(2,3)|=2$

- $(2,1)^{2}=(4 \operatorname{rad} 3,1)=(1,1) \quad|(2,1)|=2$

$$
\approx w(3) \oplus u(4)
$$

- $(1,3)^{2}=(1,9 \operatorname{mal} 4)=(1,1) \quad(1,3) \mid=2$

$$
\left\{1+V, R_{180}, R_{0}\right\} \leq D_{4}
$$

$$
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \cong W_{4}
$$

Fact: There are exactly 2 groups of order Y (up to to

$$
\mathbb{Z}_{4}, \mathbb{Z}_{2} \oplus \mathbb{\pi}_{2}
$$

