Definitions

Define the following terms.

1. group
2. order
3. homomorphism
4. isomorphism
5. automorphism
6. inner-automomorphism.

Computations

7. Construct an explicit isomorphism $\phi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, *\right)$. What is $(\phi)^{-1}$?
8. Show that multiplication by π is automorphism $\phi:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$. What is $(\phi)^{-1}$?
9. Prove that $(\mathbb{Z},+)$ is isomophic to a proper subgroup of itself.
10. Let $G=U(15) \bigoplus Z_{10} \bigoplus S_{5}$. Find the order of (2,3,(123)(15)).
11. Find the inverse of $(2,3,(123)(15))$ in the group G above.
12. Find the cyclic subgroups of $U(30)$.
13. Decode the following message. Assume the RSA algorithm was used to produce it, the encryption exponent was $\mathrm{e}=11$, and the primes were $\mathrm{p}=71$ and $\mathrm{q}=43$. Decode the message by breaking the message into two digit groups. Assume $\mathrm{A}=01, \mathrm{~B}=02, \ldots, \mathrm{Z}=26$ and a space is 28 .
5341580149648549414962370440149618754852276226548501485440235323702603 0118754852265141120482445237023531411
14. Suppose my RSA public key information is $\mathrm{e}=11$ and $\mathrm{n}=899$. Send me a short scrambled message.

Symmetries of objects

15. Describe the group of rotational symmetries of the tetrahedron.
16. Describe the group of rotational symmetries of the cube.

Symmetric groups

17. How many elements of order 3 are there in S_{4} ?
18. Compute this product in S_{4}. (123)(314)
19. What is the order of this element in S_{4} ? (1234)(24)(1432)

Short proofs

20. Explicitly show that an inner-automorphism is an isomorphism.
21. Use the result above to show that if two cycles are conjugate in S_{4} then they have the same cycle length.
22. Let $f: G \rightarrow K$ be a homomorphism. Prove that $\operatorname{ker}(f)$ is a normal subgroup of G.
23. If $H<G$ and $|G: H|=2$ show that $H \triangleleft G$. Use this to prove that $A_{4} \triangleleft S_{4}$.
24. Show that no group can have exactly two elements of order two.
25. Consider $G=U(16)$ and $H=\{1,15\}$ and $K=\{1,9\}$.
(a) Determine if H and K are isomorphic subgroups of G. Justify your conclusions.
(b) Determine if G / H and G / K are isomorphic factor groups. Justify your conclusions.
26. Show that $S L(2, \mathbb{R}) \triangleleft G L(2, \mathbb{R})$ and the factor group $G L(2, \mathbb{R}) / S L(2, \mathbb{R})$ is isomorphic to some very familiar group. What is this group? (Justify your answer.)
27. Prove that $D_{4} / Z\left(D_{4}\right)$ is isomorphic to $Z_{2} \bigoplus Z_{2}$.
