

End Time: _____

Name/Honesty Signature: I did not use my notes, my text, or any outside resources _____

- 1. Let $f: G \to K$ be a homomorphism. Prove that ker(f) is a normal subgroup of G.
- 2. Answer these questions on symmetric groups.
 - (a) How many elements of order 3 are there in S_4 ?
 - (b) Compute this product in S_4 . (314)(124)(13)
- 3. Show that $f(x) = \log_a(x)$ is an isomorphism from $(\mathbb{R}^+, *)$ to $(\mathbb{R}, +)$.
- 4. Show that no group can have exactly two elements of order two.
- 5. Show that $SL(2,\mathbb{R}) \triangleleft GL(2,\mathbb{R})$ and the factor group $GL(2,\mathbb{R})/SL(2,\mathbb{R})$ is isomorphic to some very familiar group. What is this group? (Justify your answer.)
- 6. Prove that $D_4/Z(D_4)$ is isomorphic to $Z_2 \bigoplus Z_2$.
- 7. Let $G = U(10) \bigoplus Z_{15} \bigoplus S_4$. Find the order and the inverse of (2,4,(143)(12)).
- 8. Describe the group of rotational symmetries of the cube in relation to S_4 . In particular, associate different symmetries of the cube to elements of order 1, 2, 3 and 4 in S_4 .
- 9. Prove that if two cycles are conjugate in S_4 then they have the same cycle length.
- 10. If H < G and |G:H| = 2 show that $H \triangleleft G$. Use this to prove that $A_4 \triangleleft S_4$.
- 11. Show that A_4 (the Alternating Group of 4 elements) does not contain an element of order six.
- 12. My favorite part of abstract algebra is ______.