Monday

1. Uniqueness in Division Algorithm
2. Recall last time: gcd is linear combo and is 1 when rel. prime
3. Use 1/rel. prime to show Euclid's Lemma

- 4. Modular Arithmetic
a. definition
b. example
c. theorem: a mod $n=b$ iff n divides $a-b$
d. reference exercise: We can "mod first"

5. Complex Numbers: Properties

マ 6. Induction
a. 1st Principle:
b. Strong Form:
7. Use induction to prove Fund. Thm of Arithmetic
8. Use Fund. Thm of Arithmetic to prove infinitude of primes

Last time: If a, b are rel, prime then $\underbrace{\exists!} s, t \in \mathbb{Z}$ such that $a s+b t=1$ there exists a unique

Ex

$$
\begin{aligned}
& 13 s+8 t=1 \\
& 13(-3)+8(5)=1
\end{aligned}
$$

Today: use this idea the prove
Eudird's lemma, If p is prime $\frac{1}{\xi} p l a b$, for $a, b \in \mathbb{Z}$ then play or pleb
By the war primeness is important) B / C.
6124 but $24=8.3$ so $b / 8.3$ yet $6 \times 8 \frac{1}{q} 6 \times 3$.
proof' Assume' p prime $\frac{1}{\xi} \frac{a b=p i a b}{p l a b}, \frac{p}{}+a$ wee show pl.
we then have: $p s+a t=1 . \quad(b / c \quad p$ is prince p is rel, \& pta.
mull. by b)

$$
\begin{aligned}
& p b s+a b t=b \\
& p b s+p q t=b \\
& p(b s+q t)=b \Rightarrow p \mid b
\end{aligned}
$$

Modules Anthmetiz'
when say $a=b n+r \quad(w) 0 \leq r<n)$ this means
$a \bmod n=r$

$$
a \% n=r
$$

"' a mod n is $r^{\prime \prime}$ na modulo n is r^{\wedge}

For clocks ($12-h r$ time)

$$
\begin{array}{lll}
13=1 \cdot 12+1 & \text { means } & 13 \bmod 12=1 \\
-11=(-1) 12+1 & \text { means } & -11 \bmod 12=1
\end{array}
$$

1, $13,-11$ all are equivalent modulo 12 ... because they all hare remainder I in division algorithm,

The: You can \bmod first.
Ex.

$$
\begin{aligned}
17+9 \bmod 7 \longrightarrow 17 \bmod 7 & +9 \bmod 7 \\
\bullet 3 & +2 \\
& =5
\end{aligned}
$$

$26 \bmod 7$

$$
=5
$$

prof: Hint: If $a \bmod n=b$ then $a=n q+b \quad(0 \leq b<n)$.

Induction: ∞ to climb $\infty^{\prime} l y$ high

1. get on ladder
2. know that, from wherever you stand, you can climb to the next rung
tHeorem: For any $n \in \mathbb{Z}^{+}$,

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

prove (1) get on ladder (does it work for)

$$
1=\frac{1(1+1)}{2} \quad \text { (it works) }
$$

(2) assume. $1+2+\ldots+k=\frac{k(k+1)}{2}$
prove: we can climb

$$
\begin{aligned}
& 1+2+\ldots+k=\frac{k(k+1)}{2}+\frac{(k+1)}{\partial} \cdot 2 \\
& \\
& +(k+1) \\
& 1+2+\ldots+(k+1)=\frac{(k+1)(k+2)}{\partial} \Rightarrow \text { By induce this }
\end{aligned}
$$

1. We save: given $a \in \mathbb{Z}, b \in \mathbb{Z}^{+}$we con always find $q \in \mathbb{Z} \frac{1}{a} r$, s.t. $0 \leq r<b$ where .

$$
a=b q+r
$$

Div. Alg.

Fact: $q{ }^{\frac{1}{2}} r$ are unique: whir?
Suppose

$$
\begin{array}{r}
a=\frac{b q+r=b q^{\prime}+r^{\prime}}{} \begin{array}{r}
b\left(q-q^{\prime}\right)+r=r^{\prime} \\
b\left(q-q^{\prime}\right)=\left(r^{\prime}-r\right)
\end{array}
\end{array}
$$

$$
0 \leq r^{\prime}<b
$$

$\Rightarrow b \mid r^{\prime}-r$ is possible only if $r^{\prime}-r=0$

