Groups = Symmetry.
We use the term "symmetry" to represent:
the way p in which an object can be transformed yet remain invarient
Today we studs the symmetries of a square. Labels are only to distinguish symmetric, Q: How many "symmetries" does a square possess 8. We call this group D_{4}. It has $2.4=8$ elements

Q: Is this group Abelian? (Do every two elements commute)
NO -1 Noels Abel.

$$
R_{90} \cdot \gamma
$$

V came first, then R90
(function composition

$$
\begin{aligned}
& f \circ g(x)= \\
& V \circ R_{a 0}
\end{aligned}
$$

Q: Are there any ells tho commute ?
A: Yes, sony two rotations.
Q: What are inverses of each et?
(Recall, every eft. needs an inverse.
$R_{0} R_{0}$
$R_{90} R_{270}$
$R_{180} R_{180}$
$R_{270} R_{90}$
$v \quad V$
H H
$D, \quad D$

Ex. Store at Cayley Table for D_{4} in Text,

Garret! if $x \cdot y=e$ is $x y=y x$?
Ans: yes: if $x, y=e$

$$
\begin{aligned}
& x^{-1} \cdot x \cdot y=x^{-1} \cdot e \\
& e \cdot y=x^{-1} \cdot e \\
& y=x^{-1} \\
& \text { so } \\
& \text { mull. by } x \text { on right. } \\
& y x=\underbrace{x^{-1} x}_{e} \\
& y x=e
\end{aligned}
$$

Example of an important infinite group
$G L(2, \mathbb{R})=$ generalized linear group.

$$
=\{\partial \times 2 \text { matrices us } \operatorname{det} \neq 0 \text {, matrix mull. }\}
$$

This set is closed under matrix mult 1 multi by two elements in the set produce a third elf, in the set.

Ex. (\mathbb{H}, \div) not closed b/c $2 \div 3 \notin \mathbb{Z}$.
Why is $G L(2, \mathbb{R})$ closed under $*$?

$$
\operatorname{det}_{\operatorname{si}}(A, B)=\underbrace{\operatorname{det}(A)}_{0} \cdot \underbrace{\operatorname{det}(s)}_{0}
$$

θ

GLu \mathbb{R}.

$$
\begin{aligned}
& S=\{M \in M(n) \mid \operatorname{det} M \neq 0\} \\
& \text { of Matrix mult }
\end{aligned}
$$

1. $\operatorname{det} A \cdot B=\operatorname{det} A \cdot \operatorname{det} B$

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} b_{1}+a_{2} b_{3} \\
a_{3} b_{1}+a_{4} b_{3}
\end{array} \quad \begin{array}{l}
a_{1} b_{2}+a_{2} b_{4} \\
a_{3} b_{2}+a_{4} b_{4}
\end{array}\right) \\
& \operatorname{det} A=a_{1} a_{4}-a_{2} a_{3} \\
& \operatorname{det} B=b_{1} b_{4}-b_{2} b_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det} B=b_{1} b_{1}-b_{2} b_{3} \\
& \operatorname{det} A \cdot \operatorname{det} B=a_{1} a_{4} b_{1} b_{4}-a_{1} a_{4} b_{2} b_{3}-a_{2} a_{3} b_{1} b_{3}+a_{2} a_{3} b_{2} b_{3}
\end{aligned}
$$

$$
\text { det } t=\left(a_{1} b_{1}+a_{2} b_{3}\right)\left(a_{3} b_{2}+a_{4} b_{1}\right)-\left(a_{3} b_{1}+a_{4} b_{3}\right)\left(a_{1} b_{2}+a_{2} b_{4}\right)
$$

$$
=a_{1} b_{1} a_{3} b_{2}+a_{1} b_{1} a_{4} b_{4}+a_{2} b_{3} a_{3} b_{2}+a_{2} b_{3} a_{4} b_{4}
$$

- $a_{3} b_{1} a_{1} b_{2}-a_{3} b_{1} a_{2} b_{3}-a_{4} b_{3} a_{1} b_{2}-a_{4} b_{3} a_{2} b_{4}$ QED.

$$
\left(\operatorname{det} A^{-1}\right)=(\operatorname{det} A)^{-1}
$$

Gln \mathbb{R} is
CLOSED under matrix mult.l

