Cyclic Groups:
Defin: G is cyolr \quad i $G=\left\{a^{n} \mid a \in G, n \in \mathbb{Z}\right\}=\langle a\rangle$
$\left.\begin{aligned} & \text { Ex } \mathbb{Z} \text { is cycliz } \mathbb{Z}=\langle 1\rangle=\langle-1\rangle \\ & \text { under adelition : Non-Ex } \\ & 1^{3}=1+1+1\end{aligned} \right\rvert\, \begin{array}{lll}D_{4} & \text { is not } \\ \text { cyelk }\end{array}$

Ex \mathbb{Z}_{n} is cyclic
Ex: $u(12)=\{1,5,7,11\}^{\text {not cyctic Powers of } 5: 5,5^{2}=1 \quad\{1,5\}}$
$7: 7,49 \bmod 12=1,\{1,7\}$
$u(10)=\{1,3,7,9\}$
11: $\{1,11\} \mathrm{b} / \mathrm{c} \downarrow$
Powers of $\}=u(10)(\Rightarrow$ it's cyciic)

$$
\{3,9,7,1\}
$$

$$
\begin{aligned}
(n-1)^{2} & =n^{2}-2 n+1 \text { modn } \\
& =1
\end{aligned}
$$

Question: When does $a^{i}=a^{j}$?
Thm: If $|a|$ is infinite $a^{i}=a^{j} \Rightarrow i=j$. $\quad(4,1)$
(2) $\ddagger f|a|$ is finite then $a^{i}=a^{j} \Rightarrow n \mid i-j$

$$
(|a|=n) \quad\left(E x, \quad \mathbb{P}_{6}=\{0,1,2,7,4,5\}\right.
$$

order of the element

$$
1^{17}=17 \bmod 6=5=1^{5}
$$

(3) $\frac{1}{4}$

$$
\dot{\xi}\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\} .
$$

order of the group generctel a :
Two concepts of order are the same for cycle over of $=$ \# of elements groups generated by a

Ex

$$
n=13
$$

\mathbb{Z}_{13} is cyclic, generated by $1(\bmod 13)$
$\left\{\begin{array}{llll}\text { In } \mathbb{Z}_{13} \text { the order of } t \text { is } 13 . \\ \text { The order } \mathbb{Z}_{13} \text { is ALSO } 13 .\end{array}\right\} \begin{aligned} & 1^{2}=2 \\ & 1^{7}=7 \\ & 1^{15}=15 \bmod 13=2\end{aligned}$

$$
1^{13}=13 \bmod 13=\theta
$$

id elf.
prof.
(1) If lat is infinite, the $a^{i}=a^{j}$ implies $i-j=0$

Assume $a^{i}=a^{j}$.

$$
a^{i} \cdot a^{-j}=a^{j} \cdot a^{-j}
$$

$a^{i-j}=e$. (Now, we have some power of a equaling the identity yet $|a|=\infty$.)
So $\quad i-j=0$

$$
{ }_{o} \quad i=j
$$

(2) Assume $|a|=n$, Shove If $a^{i}=a^{j}$ then $n \mid i-j$.
Div. Alg $\Rightarrow i-j=n k+r \quad \frac{1}{4} 0 \leqslant r<n$
S.

$$
\begin{aligned}
& a^{i-j}=a^{n k+r}=a^{n k} \cdot a^{r}=\left(a^{n}\right)^{k} \cdot a^{r}=e^{k} \cdot a^{r}=a^{r} . \\
& \quad b k|a|=n \\
& \text { Il } \\
& \text { (dy } a^{n}=e \\
& \quad S_{\text {in }} r=0 .
\end{aligned}
$$

thus

$$
i-j=n k
$$

(e) $\delta_{i-j r}$
$\Rightarrow n$ divides $i-j$.
(3) If $|a|=n$, show any power of a, say a^{k}, lives in $\langle a\rangle$.

Recall, $a^{n}=e$.

$$
\begin{aligned}
& a^{k}=\overbrace{a, a, a,}^{e} \overbrace{a \cdot a, a, a, a \cdot a, a, a \cdot a \cdot a, a, a}^{e} \overbrace{a \cdot a, a, a, a}^{e}=a_{a^{2}}^{e} \\
& \text { div alg. }
\end{aligned}
$$

is, $k=n q+r \quad \frac{1}{\varepsilon} 0 \leq r<n$
s. $\quad a^{k}=a^{n q+r}=\left(a^{n}\right)^{q} \cdot a^{r}=a^{r} \quad 0 \leq r<n$

So $a^{r} \in\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$
point: $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$

Corollany.

$$
\begin{aligned}
& |a|=1<a>1 \\
& \text { order of } \\
& \text { elt } a
\end{aligned}
$$ of $|a|$

i.e, $|a|$ divides k)

Thm 4.2 On Fridy

