Happy Monday, Weele 7 -

Note: Aletrat Alg II - Winder 20. (Groups Rings, Division Rings, Fields)

Note! Middern! Next wed.

today: (somorphisms

when two groups are really the some.

First some reminders,

f(a) f(a) f(c) = f(d) then

Not 1-1

if the images of two elements are equal then the two elements themselves are equal

Della onto: A funda fix - y is onto ix

(surjective)

If yet 3 xex s.t b(x) = y

Def's A function f' X -> Y is a homomorphism of; $f(x_1 + x_2) = f(x_1) + f(x_2)$

Note: $f: X \longrightarrow Y$ nears f is a function from x to y $d_{omain} = d(f(x)) + d(g(x))$

range

An isomorphism f, from a group G to another group G is (function) from G to G that is,

> 1-1, onto, homomorphism operation preserving

lim (fix) + gix)= $\lim_{x\to\infty} f(x) + \lim_{x\to\infty} g(x)$

AB one nxn matrices Ar , Br. are vectors (A+B)V = AV + BV

Note: Every bingroup is isomorphic to some subgroup of permutations

Example of Isomorphisms,

1-1: If
$$f(a) = f(b)$$
 then $e^a = e^b$ but then $ln(e^a) = ln(e^b)$

$$a = b$$

onto: let $y \in \mathbb{R}^{+}$. Find some $x \in \mathbb{R}$ site $e^{x} = y$. (by volving this for x: $x = \ln y$. $x = \ln y$.

homomorphisn: Show f(a + b) = f(a) * f(b)operation
preserving

$$f(x) = e^{x}$$
, plug in a+b:
 $f(a+b) = e^{a+b} = e^{a+b} = f(a) \cdot f(b)$

Here's on example of an operation preserving (homomorphism) that is not on isomorphism.

Ex $\varphi: (Z_1+) \longrightarrow (Z_2+)$ by $\varphi(n) = n \mod 2$. Sina:

 $\varphi(a+b) = (a+b) \mod 2 = a \mod 2 + b \mod 2 = \varphi(a) + \varphi(b)$ (1) φ is a homorphism

(2) Q is onto: $\mathbb{Z}_2 = \frac{9}{12}$, For $0 \in \mathbb{Z}_2$ $0 = \frac{9}{12}$ $0 = \frac{9}{12}$ mod $0 = \frac{9}{12}$ $0 = \frac$

(3) Q is not |-| bic Q(102) = Q(2), yet $|02 \neq 2|$ in $(Z_1 +)$.

Every | cycliz group is Isomorphiz to (Z,+)Every finite cyclic group is Isomorphic to Z_n for some nthis follows L/L:

Let $G = \langle a \rangle$ for $|G| = \infty$.

Every element in G is some aBefore $P: G \longrightarrow Z$ by $P(a^k) = k$. $P(a^{k_1}, a^{k_2}) = P(a^{k_1+k_2}) = k$ $A^{k_1+k_2}$ $A^{k_1+k_2}$ $A^{k_1+k_2}$