Happen Monday, week 7 -
Note: Abstract Alg II - Winter 20. (Groups, Rings, Division Rings, Fields)

Note: Midterm! Next wed,

Today: Isomorphisms
when two groups are really the same.
First some reminders,
Def'n: $1-1$, "ore to one". A function $f: X \longrightarrow Y$ is $1-1$ if:
(injective)

If $f(c)=f(d)$
then

$$
c=d
$$

if the images of two elements are equal then the two elements themselves are equal

Defin onto: A finch $f: x \rightarrow Y$ is onto if
(surjective)

$H \in Y$ sit

$$
\text { If } y \in Y \quad \exists \quad x \in X \quad \text { sit } f(x)=y \text {. }
$$

Defin: A function $f: X \rightarrow Y$ is a homomorphism if:

$$
f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)
$$

Note: $f: x \longrightarrow y$ means f is a function from x to y

Ex.

$$
\begin{aligned}
& \frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x} \lg (x) \\
& \lim _{x \rightarrow \infty}(f(x)+g(x))= \\
& \lim _{x \rightarrow \infty} f(x)+\lim _{x \rightarrow \infty} g(x) \\
& \\
& \begin{array}{l}
\text { A,B are } n \times n \text { matrices } \\
V \in n \times 1 \text { rector }
\end{array}
\end{aligned}
$$ Ar, Br. are vectors. $(A+B) V=A r+B r$

1-1, onto, homomorphism $\underbrace{}_{\text {operation preserving }}$

Note: Every fingroup is isomorphic to some subgroup of permuratuix
Exampere of isomonphisms:
(1) $(\mathbb{R}, 4) \longrightarrow\left(\mathbb{R}^{+}, *\right) \quad f: \mathbb{R} \longrightarrow \mathbb{R}^{+}$, by $f(x)=e^{x}$.

1-1: If $f(a)=f(b)$ then $e^{a}=e^{b}$ but then

$$
\begin{aligned}
\ln \left(e^{a}\right) & =\ln \left(e^{b}\right) \\
a & =b
\end{aligned}
$$

onte: let $y \in \mathbb{R}^{+}$. Find sove $x \in \mathbb{R}$ s.t.
$e^{x}=y$. (by solvins this for x : $x=\ln y$.
so $\ln y \in \mathbb{R} \quad \forall / C \quad y \in \mathbb{R}^{+}$thus
$x=\ln y$ is the clevent that is moppal orto y.
homomordhish: show $f(a+b)=f(a) * f(b)$ operaton presenng
$f(x)=e^{x}$, plug in $a+b$:

$$
f(a+b)=e^{a+b}=e^{a} \cdot e^{b}=f(a) \cdot f(b)
$$

Here's on example of, an operation presernng (homomuphish) that is not sn isomorphism.

Ex $\varphi:\left(\mathbb{Z}_{1}\right) \longrightarrow\left(\mathbb{Z}_{2},+\right)$ by $\varphi(n)=n \bmod 2$. since:

$$
\varphi(a+b)=(a+b) \bmod 2=\operatorname{amod} 2+b \bmod 2=\varphi(a)+\varphi(b)
$$

(1) Q is a homonphism
(2) Q is onto: $\mathbb{Z}_{2}=\{0,1\}$, for $\theta \in \mathbb{Z}_{2} \quad \theta=\varphi(102)=102 \bmod 2$

$$
=0
$$

For $1 \in \mathbb{Z}_{2} \quad 1=\varphi(3)=3 \mathrm{modz}$ $=1$
(3) φ is not $1-1$ bile $\varphi(102)=\varphi(2)$, yet $102 \neq 2$ in $\left(\mathbb{x}_{1}+\right)$.

Every I cycitiz group is isumonpuiz to $(\mathbb{Z},+)$ infinite
Every finite cycle group is isomonghic to En for this follows be,

Let $G=\langle a\rangle$ \& $|G|=\infty$.
Every element in G is sure a^{k}.
Define $\varphi: G \longrightarrow \mathbb{Z}$ by $\varphi\left(a^{k}\right)=k$.

$$
\varphi(\underbrace{a^{k_{1}} \cdot a^{k_{2}}}_{a^{k_{1}+k_{2}}})=\varphi\left(a^{k_{1}+k_{2}}\right)=k_{d^{\prime}}=\left(k_{1}+k_{2}\right)=\varphi\left(a^{k_{1}}\right)+\varphi\left(a^{k_{2}}\right)
$$

I-) (oath:

