$$
\begin{aligned}
& \partial^{n} 3^{2 n}-1 \bmod 17=0 \quad \text { Proceed by induction } \\
& n=1: 2 \cdot 3^{2}-1=17 \\
& n=k: \quad 2^{k} 3^{2 k}-1 \bmod 17=0, \quad \partial_{3}^{k_{3}^{2 k}}-1=17 n \\
& 2.3\left(2^{k} \frac{* 18}{2 k}-1\right)=18.17 \mathrm{~m} \\
& 2^{k+1} 3^{2(k+1)}-18=18.17 \mathrm{~m} \\
& \frac{+17}{2^{k+1} \cdot 3^{2(k+1)}-1=18.17 m+17}=17(18 m+1) \quad Q \in D
\end{aligned}
$$

*38-Ch.O:

$$
\forall n \in \mathbb{I}, n^{3} \bmod l=n \bmod 6
$$

(1.) $n^{3}-n=n\left(n^{2}-1\right)=n(n-1)(n+1)$
(2.) Recall $n^{3} \bmod 6=n \bmod \leftrightarrow n^{3}-n$ is divisitb by 6 .
3. Exactly ove of the following hodds: $n=6 k, n=6 k+1, n=6 k+2, n=6 k+3, n=6 k-2, n=6 k-1$ (l) $n=6 k, \Rightarrow n^{3}=6\left(6^{2} k^{3}\right)$ so $n^{3} \bmod 6=\operatorname{nmod} 6=0$.
(ii) $n=6 k+1 \Rightarrow n^{3}-n=(6 k+1) \cdot(6 k+1-1)(6 k+1+1)$ usm) (1.)
$=6 k \cdot(6 k+1)(6 k+2) \Rightarrow n^{3}-n \bmod 6=0$, so by (2) we're done,
(iii) $n=6 k+2 \Rightarrow n^{3}-n=(6 k+2)(6 k+1)(6 k+3)=2(3 k+1)(6 k+1)(3)(2 k+1)=6 k$ for $k \in \mathbb{Z}$.

By (2) we're done.
(iv) $n=6 k+3 \Rightarrow n^{3}-n=(6 k+3)(6 k-2)(6 k+4)=3(k+1)(2)(3 k-1)(6 k+4)=6 k, f r \quad k^{\prime} \in \mathbb{Z}$,

By (2) we're done.
(v) $n=6 k-2 \Rightarrow n^{3}-n=2(3 k-1)(\overbrace{(6 k-3)}^{3(2 k-1)}(6 k-1)=6 k^{\prime \prime}$, for $k^{\prime \prime} \in \mathbb{Z}$. By (2) weive done.
(01) $n=6 k-1 \Rightarrow n^{3}-n=(6 k-1)(6 k-2)(6 k)=6 k_{4}$, for $k_{4} \in \mathbb{Z}$. By (2) weire done.
62. Ch. O
$3,5,7$ are the only consecutive odd prime integers.
By working examples notice how any group of whsecutive odd integers are dwsibh by 3 .
let $P_{1}=2 k+1$ be arbitrary, then $P_{2}=2 k+3, P_{3}=2 k+5$ are (arbitrary) consecutive odd ints. If P_{1} is divisible by 3 the theorem is proved.
Assume P_{1} is not divisible by 3 . There are two cases.
Case 1. $P_{1}=3 k+1$, case $2: p_{1}=3 k+2$.
Case 1: $P_{2}=P_{1}+2$ by diff h so $P_{2}=3 k+3=3(k+1)$ so $3 \mid P_{2}$.
Case 2) $P_{3}=P_{1}+4$ by diff so $P_{3}=3 k+2+4=3 k+6=3(k+2)$ so $3 \mid P_{3}$. Since this triple was arbitrary, we're done.

H/w
Chapter 1: 4,6,9,10,13,16,19,24
(4.)

$$
D_{S}: 5 \text { Rotations, } w / \text { angles } 0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}
$$

5 reflections, each fixing the center $\frac{1}{9}$ a unique vertex.
(6.) There are two sides to an n-sidel figure, ore side we denote t, the other -. We then say ore side has positive orientalion, the other negative orientation.
Any rotation preserves the orientation, $\frac{1}{4}$ any symmetry that preserves orientation is a rotation, " "reflection. "reflection changes "
Any reflection followed by a reflection preserves the orientation $(t \rightarrow \rightarrow \rightarrow)$ is thus a reflection.
(9.) See above.
(10.) Odd number of reflections \Rightarrow reflection.
(13.) $R_{90} V=V R_{270}$
(16) $G=\left\{R_{0}, R_{180}\right\}$
(19) D_{6}
(24)

$$
\begin{array}{llll}
\mathbb{Z}_{4} & D_{5} & D_{4} & \mathbb{Z}_{2} \\
D_{4} & \mathbb{Z}_{3} & D_{3} & D_{16} \\
D_{7} & D_{4} & D_{5} & D_{10}
\end{array}
$$

