Topology, the definition evolved from studying \mathbb{R}. The notion of a "topology on a set" \qquad indicates closeness.

an open interval, is denoted (a, b) has this property'

$$
\begin{aligned}
& (a, c) \cap(b, d)=(b, c) \\
& (1,10) \cap(2,11) \cap(3,12) \cap(4,13)=(4,10)\} \begin{array}{l}
\text { closure } w / \\
\text { finite intersections }
\end{array} \\
& -S=\left\{\left.\left(1-\frac{1}{n}, 1+\frac{1}{n}\right) \right\rvert\, n \in\{2,3, \ldots\}\right\} \quad \text { No closure w/ } \infty \text {-ints }
\end{aligned}
$$

examples of members of S :

$$
\begin{aligned}
& \left(1-\frac{1}{2} 1+\frac{1}{2}\right) \\
& \left(1-\frac{1}{3}, 1+\frac{1}{3}\right) \\
& \left(1-\frac{1}{4}, 1+\frac{1}{4}\right)
\end{aligned}
$$

Note: $\bigcap_{n=2}^{\infty}\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)=\{1\}$
why not 1.000001?

- $\bigcup_{n=2}^{\infty}\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)$ open
- $(1,2) \cup(4,5)$ union of two open sets.
- Here infinite unions of open intervals give open intervals or unions of them

Let X be a set. A collection of subsets T form a topology on X if:

1. Both $\phi \frac{1}{\xi} X$ are in T.
2. Finite intersections of elements of T, are in T
3. Any (finite or infinite) union of elements of T are in T.

Ex. $\quad x=\mathbb{R}$
$T=\{$ all open interals or unions there of

$$
\left.\begin{array}{c}
T=\text { ald } p e n \\
\text { dén'n } \\
(1,2) \in T .
\end{array} \begin{array}{c}
(a, b) \\
a \in \mathbb{R} \\
b \in \mathbb{R}
\end{array}\right] \quad \mathbb{R}=(-\infty, \infty)
$$

Note: $[a, b]$, sets of this form wouldn't work b/c

$$
\left.\bigcup_{n=1}^{\infty}[a, b], \frac{1}{n}-a, \frac{1}{n}+a\right]=(-a, a+1]
$$

Form has changed.
why isn't $-a$ in $\bigcup_{n=1}^{\infty}\left[\frac{1}{n}-a, \frac{1}{n}+a\right]$
If $x \in \bigcup_{n=1}^{\infty}\left[\frac{1}{n}-a, \frac{1}{n}+a\right]$ then $x \in\left[\frac{1}{m}-a, \frac{1}{m}+a\right]$

Dof'n: A subset A is open in a topolosiced space (X, T) if $A \in T$. (if A is a subset member of T.)
Def'n: A set A is closed if $X-A$ is open.

Topology, Week I wed
Basic Concepts
1-1: If $f(x)=f(y)$ then $x=y$
onto: $\forall y \in Y, \exists x \in X$ sit $f(x)=y$
set collection of elements, typicdly capital letters subset: $A \subset X$ means if $a \in A$ then $a \in X$ Three important types of sets

Finite

$$
\{1,2,3, \ldots, n\}
$$

Countably Infinite

$$
\begin{aligned}
& \{1,2,3, \ldots\} \\
& \mathbb{T}=\text { integers } \\
& \mathbb{Q}=\text { ration } \#^{\prime} s \\
& \mathbb{N}=\{0,1,2,3, \ldots\}
\end{aligned}
$$

Un countably infinite

$$
\mathbb{R}, \mathbb{C}
$$

$$
\mathbb{R}^{2}
$$

$$
\mathbb{R}-\{0\}
$$

$$
\mathbb{R}-\mathbb{Q}=\text { Irrationds }
$$

