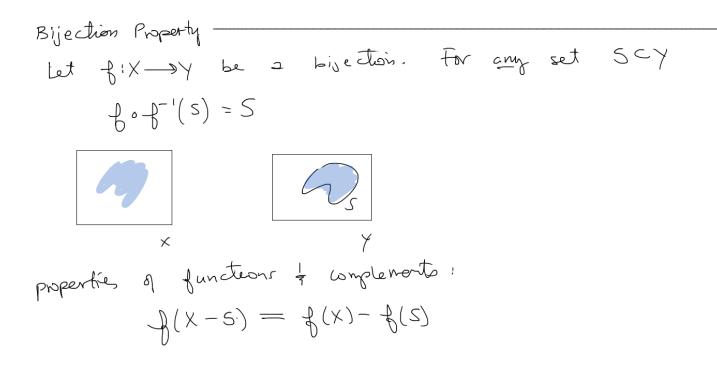
Thun' A homeormorphism is both an open map
$$\frac{1}{2}$$
 a closed map
open maps
 $\frac{qpen maps}{qpen maps}$
 $\frac{qpen maps}{qpen maps$

$$pmq!: Let f = Koneo! X \rightarrow Y. Let g = f. (Koneo! =) g is bijection, g cit, (miner ty).$$

$$let u be open in X. g(u) = V + g(v) = u. & g'(u) = V. Since$$

$$g in oth V is open. thus f is an open map.$$

$$let C be closed in X. f(() = D + g(D) = C by bijection. So
$$g'(c) = D \quad D \quad is \ closed \ since \ g is \ do \ t_c \ closel. So \ f is
a closed
maps.$$$$



thm: A homeomorphism f: X -> Y is both an open map and a closed map.

Defini Open Mapi the image of any open set is open
Closed Mapi Image of closed is closed
proof: Let if be a homed,
$$f(X \rightarrow Y)$$
.
Shad is an open map:
A let $U \subset X$ be open. Show $f(U)$ is
 $g = t_{X} \Rightarrow g^{-1}(U)$ is open in Y.
 $f(U) = f(U)$
 $f(U) = f(U)$

Let $C \subset X$ be closed. X-C is open, above => f(X-C) is open so f(X) - f(C) is open, bijecture => f(X|=Y h Y - f(C)) is open => f(C) is closed

the For a homes
$$f:x \rightarrow y$$
 $f(\partial x) = \partial(f(x))$
 f preserves the boundary.
 $f(\partial x) = \partial(f(x))$

