Monday - Week 11
Metriz: A metriz on a space X is a distance function
$d: X \times X \longrightarrow \mathbb{R} \longrightarrow$ vary/depend on which metriz
$d\left(x_{1}, x_{2}\right)=$ distance b/w $x_{1} \frac{1}{4} x_{2}$ is in play.
(1) Non-negative : $d(x, y) \geqslant 0$
(2) Symmetric: $d(x, y)=d(y, x)$
(3) $\underset{x}{x-\cdots z}$ Triangle $: d(x, y)+d(y, z) \geqslant d(x, z)$

Std Metric on \mathbb{R} :

$$
\begin{aligned}
& x=\mathbb{R} \\
& d(x, y)=|x-y|
\end{aligned}
$$

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}+\left(w_{1}-w_{2}\right)^{2}}
$$

Enclidear Metri in \mathbb{R}^{4}
$\mathbb{R}^{\prime}: \sqrt{\left(x_{1}-x_{2}\right)^{2}}=\left|x_{1}-x_{2}\right|$
Venfy this is a metriz: (satisfy (1) (1) (3))
(1) $|x-y| \geqslant 0$

$$
\begin{array}{ll}
|x-y| \geqslant 0 & \frac{\text { Def'n }}{|x|=}=\left\{\begin{array}{ll}
-x & \text { if } x<0 \\
x & \text { if } x \geqslant 0 \\
x^{20}
\end{array}|x| y \geqslant 0 \Rightarrow|x-y|=x-y \geqslant 0\right.
\end{array}
$$

There are other cases thet work out similarly
(2) $|x-y|=|y-x|$ why?
if $y<0<x$ then $x-y>0$ so $|x-y|=x-y$

$$
y-x<0 \text { so }|y-x|=-(y-x)=x-y \leqslant
$$

other cases are similor
(?)
(3) Δ-inequal: Show $|x-z| \leq|x-y|+|y-z|$

$$
\begin{aligned}
& \text { if } \quad x \geqslant y \geqslant z \\
& |x-y|=x-y \\
& |y-z|=y-z \\
& |x-z|=x-z
\end{aligned}
$$

Taxi-Cab Metric or L '-metric or \mathbb{R}^{2}

Let $\bar{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$

$$
\begin{aligned}
\bar{y} & =\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \\
d_{T}(\bar{x}) & =\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
\end{aligned}
$$

Def'r' geodesic: path of

Std metriz: $L^{2}-$ metri

$$
=\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)^{\frac{1}{2}}
$$

$\longleftarrow \quad 2$'s replaced by I's
$\vdots L^{p}$-metrics are a thing.
Nole: unit-balls/unit spleres ste-metriz L'-metriz

