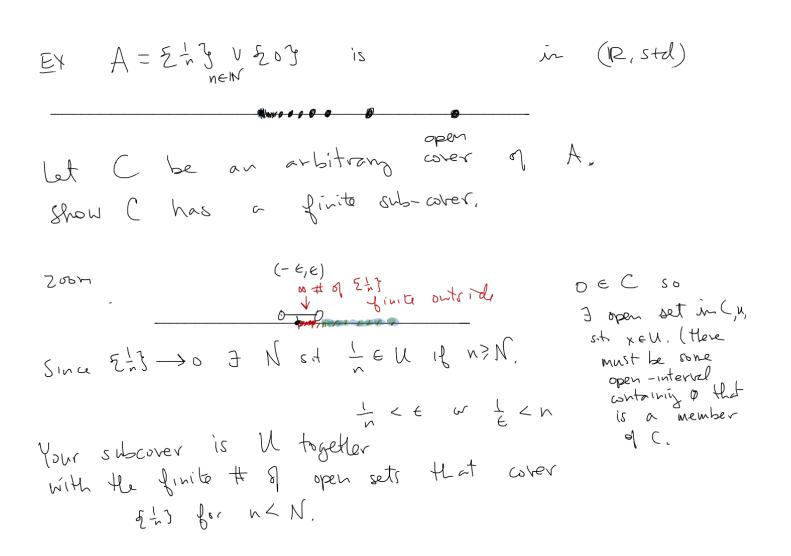
Monday

▼1. compactness

- a. def'n
- b. Rⁿ is not compact
- c. finite spaces are
- ▼d. def'n: A compact in X
 - i. every cover of A by open sets in X has a finite subcover
- e. ex: A = $\{1/n\} U \{0\}$ is compact
- f. (0,1] is not compact in R
- g. thm: cts image of compact is compact
- ${\bf v}\,{\bf h}.$ THM: unions and intersections
 - i. finite unions of compact are compact
 - $\boldsymbol{\boldsymbol{\mathsf{v}}}$ ii. if Hausdorff, intersection of compacts are compact
- 1. extra point line
- ▼ i. CLOSED and COMPACT are related
 - ${\bf v}$ i. THM: Closed inside compact is compact
 - 1. proof: C in D. Add X-C to an open cover of D.
 - 2. example: R^n
 - ▼ ii. Not the same:
 - 1. (R, FCT) every set is compact. not every set is closed.
 - ▼iii. THM: Hausdoff + Closed = Compact
 - 1. A closed, let a in A and x not in A. Hausdorff gives disjoint nbhds, a in V_a, x in U_a. Do this for all points a, but keeping x fixed. The union of all the V_a is open cover of A. Thus there is a finite subcover indexed by I. Then union over I of V_a is open, and intersection over I of U_a is also open containing x. These are disjoint, so U_a misses A entirely. x is arbitrary, so the complement is open
 - iv. Product of compact is compact.



EX.
$$(0,1]$$
 is not compact in $(12, std)$. No finite sub-cover of
 $\sum_{i}(\frac{1}{n}, 2) | n \in \mathbb{N}$ f
Any finite sub-cover would have a max N s.t.
 $(\frac{1}{n}, 2)$ is in the sub-cover and nothing to the
 $(\frac{1}{n}, 2)$ is in the sub-cover and nothing to the
left. This would not cover $\frac{1}{n+1} \in (0,1]$

Then: the Continuous image of a compact set is compact
proof: Let
$$f: X \rightarrow Y$$
 be continuous $\frac{1}{2}$ bet $A \subset X$
be a compact set. We show $-f(A)$ is compact
in Y .
Let C_X be an open cover of $f(A)$
Let C_X be an open cover of $f(A)$
 $f^{-1}(C_A)$ is open in X .
 C_A covers $f(A)$
 $f^{-1}(C_A)$ cover of A .
 $f^{-1}(C_A)$ $f^{-1}(C_A)$