1. Determine if the following sets are connected and/or compact, in the given topologies on \mathbb{R} .

$$A = [1, 2) \cup \{3\}$$
, $C = (4, 5)$, $E = [6, 7]$, $Q = \mathbb{Q}$

- (1.1) Discrete Topology
- (1.2) Standard Topology
- (1.3) Finite Complement Topology
- 2. Show that, in the standard topology on \mathbb{R} , [1,4) and [2,10] are not homeomorphic.
- 3. Show that, in the standard topology on \mathbb{R} , [1,4] and [2,10] are homeomorphic (construct a homeomorphism).
- 4. Show that, in the standard topology on \mathbb{R} , (0, 1) and \mathbb{R} are homeomorphic (construct a homeomorphism).
- 5. Prove that the continuous image of a compact set is compact.
- 6. Prove that the continuous image of a Hausdorff space is a Hausdorff space.
- 7. Prove that $\mathbb{R}^2 \{0\}$ is not compact.
- 8. Let S^1 denote the circle, D the open disk, \overline{D} the closed disk, and p a point in D. Describe in words and images the following product spaces and indicate whether the spaces are open, closed or neither in the subpspace topology on \mathbb{R}^3 .
 - (8.1) $S^1 \times D$.
 - (8.2) $S^1 \times \overline{D}$.
 - (8.3) $S^1 \times S^1$.
 - $(8.4) \ \overline{D} \times \overline{D}$
 - (8.5) $S^1 \times (D \{p\}).$
- 9. Consider the unit square in the plane,

$$X = [0, 1] \times [0, 1].$$

Describe five quotient maps on X that give surfaces. Give an argument why each resulting surfaces is <u>not</u> homeomorphic to any of the others.

- 10. Let $f: X \longrightarrow Y$ be continuous and assume that $A \subset X$. Prove that if $x \in \overline{A}$ then $f(x) \in \overline{f(A)}$.
- 11. Show that $\{\frac{1}{n}\}$ for $n \in \mathbb{N}$ is not closed in the standard topology on \mathbb{R} .
- 12. Show that $\{\frac{1}{n}\}$ for $n \in \mathbb{N}$ is not compact in the standard topology on \mathbb{R} . Use this result to answer the preceding question.