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(1) Put(X—AY = X= A ACACA =D x—AD K- ADx—A

Proof of (i). We prove that X — Cl(A) C Int(X — A) and Int(X — A) C

X — CI(A). First, note that CI(A) is closed and contains A, and therefore @
X —CI(A) is anopen setcontained in X — A. It follows by Theorem 2.2(i)
that X — CI(A) C Int(X — A).

To prove that Int(X — A) C X — CI(A), let x € Int(X — A) be
arbitrary. Note that Int(X — A) is disjoint from A, and therefore x is
in an open set that is disjoint from A. By Theorem 2.5, it follows that
x &€ CI(A); hence, x € X — CI(A). Thus, Int(X — A) € X — CI(A).

Since we have shown that both X — Cl(A) C Int(X — A) and
Int(X — A) C X — CI(A) hold, we now have Int(X — A) = X — Cl(A),
as we wished to show. [ |
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