Week 5 Monday -

Homework Due this Friday

Today: (the boundary of a set)

Defin: For a set $A \subset X$. $\partial A = \widehat{A} - \widehat{A}$.

Ex. $A = \{1, 2, 3\}$. $A = \{A \in A \mid A = A \}$ X = |R| w/ std. top. $A = \{A \in A \mid A = A \}$

EX A=IR, X=IR, w/ std typ. OA= 0 TR =IR iR = IR

Ex (0,1) = A , DA = 20,13 $\overline{A} = C \circ / I \circ A = A$

General Fact: the boundary of a set is closed.

thm: $x \in \partial A$ = every nond of intersects A = every nond intersects both A = X-A)

proof:

Assume $x \in \partial A = \overline{A} - A$. So x is in the closure.

By Theorem $\frac{3.5}{3.5}$ (our classification for closure)

every nobad of intersects A. (We're 1/2 dore!).

B/c $x \notin A$ no nobad of x is contained in A.

Thus each nobad of x intersects

thus each nobad of x intersects

the complement of A.

I Now assume every nobad of x intersects A. So $x \in A$. Now show $x \notin A$. Since, by assumption every nobad is contained completely in A, thus $X \in A$. Reading Cheek.

1. Prove: If $A \subset C$ $w_1 \subset closed$, Hern $\overline{A} \subset C$.

Hint: $u_1 \cap u_2 \cap u_3 \cap ... \subset u_1$

(a) Prove if ACB Hen ACB.

Thm. 2,6 (2) Int(X-A) = X- \widehat{A}

Proof of (i). We prove that $X - Cl(A) \subset Int(X - A)$ and $Int(X - A) \subset Int(X - A)$ X - Cl(A). First, note that Cl(A) is closed and contains A, and therefore X - Cl(A) is an open set contained in X - A. It follows by Theorem 2.2(i) that $X - \operatorname{Cl}(A) \subset \operatorname{Int}(X - A)$.

To prove that $Int(X - A) \subset X - Cl(A)$, let $x \in Int(X - A)$ be arbitrary. Note that Int(X - A) is disjoint from A, and therefore x is in an open set that is disjoint from A. By Theorem 2.5, it follows that $x \notin Cl(A)$; hence, $x \in X - Cl(A)$. Thus, $Int(X - A) \subset X - Cl(A)$.

Since we have shown that both $X - Cl(A) \subset Int(X - A)$ and $\operatorname{Int}(X - A) \subset X - \operatorname{Cl}(A)$ hold, we now have $\operatorname{Int}(X - A) = X - \operatorname{Cl}(A)$, as we wished to show.