Week 5 Monday
Homework Due this Friday
Today: (The boundary of a set)
Def'n: For a set $A \subset X . \partial A=\bar{A}-\bar{A}$.
Ex

$$
\left.\begin{array}{l}
A=\{1,2,3\} . \\
X=\mathbb{R} \text { w/ std. top. }
\end{array}\right\} \begin{aligned}
& \partial A=A \\
& \bar{A}=A \quad(A \text { is closed }) \\
& \\
& A=\phi
\end{aligned}
$$

Ex. $A=\mathbb{R}, X=\mathbb{R}, w \mid$ std top.

$$
\begin{aligned}
\partial A & =\phi \\
\mathbb{R} & =\mathbb{R} \\
0 & =\mathbb{R}
\end{aligned}
$$

Ex. $\quad(0,1)=A, \quad \partial A=\{0,1\}$

$$
\bar{A}=[0,1], \quad \dot{A}=A
$$

General Fact: The bounder of a set is closed.

The: $x \in \partial A \Leftrightarrow$ every none of x intersects $A \sum_{1}^{1}$ every ibid intersects $\quad X-A$.
(every unbid intersects both $A \frac{1}{2} X-A$)
prof:
\Rightarrow Assume $x \in \partial A=\bar{A}-\AA$. So x is in the closure. By Theorem 2.5 (our classification for closure) every ubhd of intersects A. (We're $1 / 2$ dore!). $B / C x \notin \AA$ no ubhd of x is contained in A.
 thus each n.bhd of x intersects the complement of A.

F Now assume every ubhd of x intersects A. So $x \in \bar{A}$. Now show $x \notin \AA$. Since, by assumption ever ubhd of x intersects the complement, no noil is contained completely, in A. Thus

$$
x \in \AA
$$

Reading Cheek

1. Prove: If $A \subset C$ w/ C closed, then $\bar{A} \subset C$. Hint: $u_{1} \cap u_{2} \cap u_{3} \cap \ldots<u_{1}$
(a) Prove if $A \subset B$ then $\bar{A} \subset \bar{B}$.

The. 2.6

$$
\begin{aligned}
& \text { why is } X-\bar{A} \subset X-A ? \\
& \AA \subset A \subset \bar{A} \Rightarrow X-\AA \supset X-A \supset X-\bar{A}
\end{aligned}
$$

Proof of (i). We prove that $X-\mathrm{Cl}(A) \subset \operatorname{Int}(X-A)$ and $\operatorname{Int}(X-A) \subset$
$X-\mathrm{Cl}(A)$. First, note that $\mathrm{Cl}(A)$ is closed and contains A, and therefore $X-\mathrm{Cl}(A)$ is an open set contained in $X-A$. It follows by Theorem 2.2(i) that $X-\mathrm{Cl}(A) \subset \operatorname{Int}(X-A)$.

To prove that $\operatorname{Int}(X-A) \subset X-\mathrm{Cl}(A)$, let $x \in \operatorname{Int}(X-A)$ be arbitrary. Note that $\operatorname{Int}(X-A)$ is disjoint from A, and therefore x is in an open set that is disjoint from A. By Theorem 2.5, it follows that $x \notin \mathrm{Cl}(A)$; hence, $x \in X-\mathrm{Cl}(A)$. Thus, $\operatorname{Int}(X-A) \subset X-\mathrm{Cl}(A)$.

Since we have shown that both $X-\mathrm{Cl}(A) \subset \operatorname{Int}(X-A)$ and $\operatorname{Int}(X-A) \subset X-\mathrm{Cl}(A)$ hold, we now have $\operatorname{Int}(X-A)=X-\mathrm{Cl}(A)$, as we wished to show.

