Mon. wk 11
Prop. Euclidean lines \perp to ∂H are geodesics (hyperbolic live) model

Recall, when p, q lie on a vertical lur

$$
d_{H}(p, q)=\ln (p)-\ln (q)=\ln \left(\frac{p}{q}\right)
$$

(Assume $y(t)$ is an increasing function.
∂H

$$
\begin{aligned}
& s=\text { length of } \gamma(t)=\int_{t_{0}}^{t_{1}} \frac{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}}{y} d t \geqslant \int_{t_{0}}^{t_{1}} \frac{\sqrt{0+\left(\frac{d y}{d t}\right)^{2}}}{y} d t=\int_{t_{0}}^{t} \frac{\left|\frac{d y}{d t}\right|}{y} d t \\
&\left.\left.\geqslant \int_{t_{1}}^{t_{1}} \frac{\frac{d y}{d t}}{y} d t=\int_{t_{0}}^{t_{1}} \frac{d y}{y}=\left.\ln |y|\right|_{t_{0}} ^{t_{1}}=\ln \left(y\left(t_{1}\right)\right)-\ln \right\rvert\, y\left(t_{0}\right)\right) \\
&=\ln \left(\frac{y\left(t_{1}\right)}{y\left(t_{0}\right)}\right) \begin{array}{c}
\text { length of } \\
\text { verthed } \\
\text { path }
\end{array}
\end{aligned}
$$

玉 is isometry if

$$
(x, y) \stackrel{\Phi}{(u(x, y), v(x, y)))}
$$

∂H

$$
\frac{d u^{2}+d v^{2}}{v^{2}}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

$$
\begin{gathered}
\nsim \text { Eucl,dean Geon } \\
\Phi(x, y)=(x+1, y+2) \\
I_{u}^{\prime \prime} \quad \varepsilon_{1}^{\prime} \\
d u^{2}+d v^{2}=d x^{2}+d y^{2}
\end{gathered}
$$

Example.

$$
\begin{aligned}
& \Phi_{a}(x, y)=(x+a, y) \\
& \begin{array}{ccc}
\theta_{b}(x, y)=\left(\begin{array}{cc}
x, y+b \\
n & n \\
n & v
\end{array}\right)
\end{array} \\
& \begin{array}{l}
\text { not } \\
\text { an } \\
\text { issm. }
\end{array} \\
& \begin{array}{c}
a \\
\frac{d x^{2}+d y^{2}}{y^{2}}
\end{array} \frac{d u=}{y^{2}+2 y b+b^{2}} \\
& 15 \\
& h=x \\
& d u=d x \\
& v^{2}=y^{2}+2 y b+b^{2} \\
& v=y+b \\
& d v=d y
\end{aligned}
$$

Ex. $\quad R_{b}(x, y)=(u, v)=(2 b-x, y)$

$$
\begin{aligned}
& d u=-d x \\
& d v=d y
\end{aligned}\left|\begin{array}{l}
d u^{2}=d x^{2} \\
d v^{2}=d y^{2}
\end{array}\right|
$$

y is unchanged \Rightarrow Iron.

Next, we want to see that "reflections" across non-

$$
\text { straight geodesics are isometries. } \left.\quad x \quad d u=\frac{r^{2} d x-x(2 x d x+2 y d y)}{r^{4}}\right)
$$

$$
\text { set } r^{2}=x^{2}+y^{2}
$$

$$
\begin{gathered}
u=\frac{x}{x^{2}+y^{2}} \\
d u=\frac{r^{2} d x-x(2 x d x+2 y d y)}{r^{4}} \\
d u=\frac{\left(r^{2}-2 x^{2}\right) d x-(2 x y) d y}{r^{4}}
\end{gathered}
$$

show H-metric is preserved

$$
\begin{aligned}
& d v=\frac{r^{2} d y-y(2 x d x+2 y d y)}{r^{4}} \\
& =\frac{(-2 x y) d x+\left(r^{2}-2 y^{2}\right) d y}{r^{4}} \\
& v=\frac{y}{x^{2}+y^{2}} \\
& -4 x y\left(x^{2}+y^{2}-2 x^{2}\right) \\
& =\frac{1}{r^{4}-y^{2}}\left[\left(r^{4}-4 r^{2} x^{2}+4 x^{4}\right) d x^{2}-4 x y\left(r^{2}-2 x^{2}\right) d x d y+4 x^{2} y^{2} d y^{2}\right] \\
& 4 x^{2} y^{2} d x^{2}(\underbrace{-4 x y)\left(r^{2}-2 y^{2}\right)}_{-4 x y} d x d y+\left(r^{4}-4 r^{2} y^{2}+4 y^{4}\right) d y^{2} \\
& =\frac{1}{r^{4} y^{2}}\left[\begin{array}{c}
r^{2}\left(r^{2}-4 x^{2}\right)+4 x^{4}+4 x^{2} y^{2} d x^{2} \\
x^{2}+y^{2}-4 x^{2}
\end{array}\right. \\
& r^{2}\left(y^{2}-3 x^{2}\right)+4 x^{2}(\underbrace{x^{2}+y^{2}}) \\
& r^{2}\left(y^{2}-3 x^{2}+4 x^{2}\right) \\
& r^{2}\left(y^{2}+x^{2}\right)=r^{4} \\
& =\frac{1}{r^{4} y^{2}}\left[r^{4} d x^{2}+r^{4} d y^{2}\right]=\frac{d x^{2}+d y^{2}}{y^{2}}
\end{aligned}
$$

straight geodesics are isometries.
what kind of mop is this? Inversion about unit-circle

Homewrose: What does inversion about unit circle do to the line $y=2 x$?

Lemma let l be a l lune not thru the onsin.
The image of l under 'inversion about unit circle" is " a circle which goes then rising.

$$
x=10
$$

Assume lire doesn't intersect u.c.

1. Drop 1 from O to l, forming?
2. Let $A^{\prime}=$ image of A under A
3. Repeat for point P
4. For curch

$$
\text { diametr }=0 A^{\prime}
$$

S. $\Gamma \cap \overleftrightarrow{O P}=P^{\prime}$ and claim

$$
P^{\prime}=\text { image } F P \text {. }
$$

lay ', $\triangle O P^{\prime} A^{\prime} \sim \triangle O A P$
So
image of P under inverse

$$
\begin{aligned}
& \frac{\left|O P^{\prime}\right|}{\left|O A^{\prime}\right|}=\frac{|O A|}{|O P|} \Rightarrow \frac{x}{1 /|O A|}=\frac{|O A|}{|O P|} \\
& \quad \text { coss }{ }_{\text {mn }} \mid t
\end{aligned} \quad x=\frac{1}{|O P|}=\left|O P^{\prime}\right|
$$

