Assume

$$
\frac{1}{a}+\frac{1}{a+1}+\ldots+\frac{1}{a^{2}} \geq 1 . \quad \text { for any } a \geqslant 1 .
$$

Starting with $1 / \mathrm{a}$, the sum of the next $\mathrm{a}^{\wedge} 2$ - a number of terms (finite) is greater than 1

$$
\underbrace{\frac{1}{1}+\frac{1}{2}+\ldots+\underbrace{\frac{1}{a}+\ldots+\frac{1}{a^{2}}}_{\geqslant 1}+\underbrace{\frac{1}{a^{2}+1}+\ldots+\frac{1}{\left(a^{2}+1\right)^{2}}}_{\geqslant 1}+\underbrace{\frac{1}{\left(a^{2}+1\right)^{2}+1}+\ldots \ldots+1+\frac{1}{\left(\left(a^{2}+1\right)^{2}+1\right)^{2}}}_{1}}_{\geqslant 1}
$$

you can find a endless supply of finite sums exceeding.

Induction, limits $\frac{1}{q}$ partial sums

$$
\text { Leibniz }-1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\ldots+\frac{1}{\left(\frac{n(n+1)}{2}\right)}=2
$$

Here's a more modem prof of this:

$$
\begin{aligned}
S & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\ldots+\frac{1}{n}+\frac{1}{n+1} \\
-S & =-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\ldots-\frac{1}{n}-\frac{1}{n+1}
\end{aligned}
$$

add
$0=$

$$
\begin{aligned}
& -1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\underbrace{\frac{1}{n+1}-n} \frac{1}{n(n+1)}=\frac{1}{n(n+1} \\
& 1-\frac{1}{n+1}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\frac{1}{n(n+1)}
\end{aligned}
$$

$+\frac{1}{n+1}$

Take Limits

$$
1=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots
$$

So factor
$\frac{1}{2}$ from night side $1=\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\ldots\right)$
so this must equal 2 .

Induction.
To climb au infinitely tall ladder -
(1) get on ladder
(2) Assuming you are standing on the ladder you need to know you climb to the next rung.

That's it.
By the principe of math. Indercteon you can then climb to any runs high of the ladder.

Ex: Show

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{1}{1.2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\frac{n}{n+1}
$$

(1) get on ladder, Let $n=1, \sum_{k=1}^{1} \frac{1}{k(k+1)}=\frac{1}{1 \cdot(2)}=\frac{1}{2} \quad \underline{\text { AND }}$ since $n=1$ this \quad equals

$$
Q_{\text {equal }} \rightarrow \frac{1}{1+1}=\frac{1}{2}
$$

(2) Assume the theorem to be true for n, show it's also the for $n+1$

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1} \text {, show } \sum_{k=1}^{n+1} \frac{1}{k(k+1)}=\frac{n+1}{(n+1)+1}=\frac{n+1}{n+2}
$$

(3) Expand

$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

$$
\frac{n(n+2)}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)}
$$

(4) Be creative,
$\begin{aligned} & \begin{array}{l}\text { manipalty } \\ \text { equator }\end{array} \\ & \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)} \frac{n}{n+1}+\frac{1}{(n+1)(n+2)}\end{aligned}$

$$
\begin{equation*}
\sum_{k=1}^{n+1} \frac{1}{k(k+1)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2} \tag{11}
\end{equation*}
$$

