

00

Leonhard Euler: 1707 - 1783

1. Switzerland, Russia, Berlin

- 2. math / phyics / astronomy / geography / engineer a. created graph theory & topology
 - b. analytic number theory, complex analysis, calculus
 - c. solidified the use of mathematical notation
 i. function notation: f(x)
 - ii. greek letter: pi
 - iii. imaginary number: i
 - iv. summation: Sigma
 - v. defined the constant e
 - vi. introduced the use of exp function & logs in proofs
 - vii. Euler's formula: exp(iz) = cos(z)+isin(z)
 - ► viii. Pioneered analytic methods in number theory
 - ix. hyperbolic trig functions
 - x. continued fractions
 - d. mechanics / fluid dynamics / optics / astronomy / music theory
 - i. Integraded Leibniz's differential calculus with Newton's Fluxions
 - ii. nature of & orbits of comets
 - iii. foundations of longitude tables
 - iv. Optics: foundations wave theory of light, (like Huygens)
 - ► v. Structural engineering: Euler's critical load
 - vi. Logic: Euler diagrams (before refinement to Venn diagrams)
- ▼3. Truly one of the greatest mathematicians in history.
- a. Laplace: "Read Euler, read Euler he is the master of us all.
 - b. Gauss: "The study of Euler's works will remail the best school for the different fields of mathematics, and nothing else can replace it.
 - ▼c. Most prolific
 - i. 850+ publications
 - ii. 92 volumes
 - d. Graph Theory / Topology: Seven Bridges of Konigsberg
 - ▼e. Basel Problem:
 - i. What is the sum of reciprocals of squares?
 - ▼ ii. Named after the town of Basel, Switzerland
 - 1. hometown to Euler & the Bernouli's
 - f. Topology: Euler Characteristic

 $e \sim 2.17/8 \dots , i = \sqrt{-1}$

Euler's Formul

The most beautiful equation in math: relates 4 of the

Euler's Formula
The most beautiful equation in math: relates 4 of the
most important numbers, e, i pi, 1 and 0
Start',

$$Gin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{4!}$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!}$$

$$e^{x} = 1 + x + \frac{x^{2}}{3!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

set $x = i\theta$
 $p_{i}^{i\theta} = 1 + i\theta + \frac{(i\theta)^{3}}{3!} + \frac{(i\theta)^{3}}{3!} + \frac{(i\theta)^{4}}{4!} + \frac{(i\theta)^{5}}{5!} + \frac{(i\theta)^{6}}{6!}$

$$= 1 + (i \theta)^{2} + (i \theta)^{4} + (i \theta)^{6} + \dots \qquad i \theta + (i \theta)^{3} + (i \theta)^{5} + (i \theta)^{7} +$$

						•			Euler Characlem?tiz is
K	Name of Solid	No. of Faces (F)	No. of Vertices (V)	No. of Edges (E)	Type of regular <i>n</i> -gon (polygon) at each face (<i>n</i>)	No. of faces at each vertex (k)	No. of degrees in each face angle	No. of deg. in ea. polyhedral angle	a topological invariant i.e., each of the Platonic
2	Tetrahedron	4	4	1-					solids a topological sprete
Э	Cube		UP.						-
Э	Octahedron								Exercise
9	Loosabedron	~							
	The Regular S Tetrahedron	olids ¹	ibe	Octra	ahedron Do	decahedron	Icosahec	iron	$\chi(\cancel{m}) = 3 - 3 + 1 = 3 - 3^{(1)}$ $\chi(\cancel{m}) = 1 - 2 + 1 = 0$ $\chi(\cancel{m}) = 2 - 2g$ $= 3 - 2g$
E	uler cha	er a c	tevistiz		$\mathcal{X}(\mathbf{A})$) = `	V — { ~	- + numbe	F = 4 - 6 + 4 = 2

