Hippocrtates'lune (born: 430 BC)

1. a merchant, was swindled and lost it all.
2. was one of the first paid teachers

3. Aristotle thought him foolish
4. In the fth century, theorems piled up, requiring organization. He pioneered this, but his work was lost.
5. He was the pioneer of RAA, reductio ad absurdum - proof by contradition
6. One of the first to use letters to denote points on geometric figures.
v 7. In Athens, 3 challenging problems had risen: 3 Great Problems of Antiquity
a. Square the circle
b. Duplicate the cube
c. Trisect any angle
v 8. His lune is quadrable \& proof requires these simple ideas
a. Thales Theorem
b. Pythagorean Identity
c. Ratio of areas of circles is ratio of squares of diameters * (akin to a formula for area of circle)
d. $A B=s q r t 2^{*} A O=s q r t 2^{*} / 2{ }^{*} A C$
e. $A B^{\wedge} 2 / A C \wedge 2=1 / 2$
f. Small semicircle $=1 / 2$ large semicircle $=$ AFBO quadrant
g. Lune = triangle

Finish: Ch.
Next
:Ch. 2

Show Hippocrates' Lune is Quadrable

Strategh:

$$
\begin{aligned}
& |\triangle A E B D|=|\triangle A D B F| \\
& \text { Ratio of Large Semicird } \\
& \text { Small Semi cire }
\end{aligned}=\frac{A C^{2}}{A B^{2}}=\frac{(2 A O)^{2}}{A B^{2}}=\frac{4 A O^{2}}{A B^{2}} \quad \begin{aligned}
& D=2 r_{1} \\
& \frac{D_{1}^{2}}{D_{2}^{2}}=\frac{4 r_{1}^{2}}{4 r_{2}^{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}
\end{aligned}
$$

Show \mid Lune $A E B|=|\triangle A O B|$
Toul: Ratio of areas of two circles
Ratio of square of diameters

$$
\frac{\pi r_{1}^{2}}{\pi r_{2}^{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{D_{1}^{2}}{D_{2}^{2}}
$$

$$
\begin{array}{r}
\text { Pythas, the }=\underline{A B^{2}}=A O^{2}+O B^{2}=2 A O^{2} \text { : Together Rats }=2 \\
\text { Bine }=\frac{\text { Large Semi } \operatorname{civ} Q}{}=\frac{\text { Red }}{2}
\end{array}
$$

is common to both, were done.

Duplication of the Cube

1. Great problem of antinquity
2. Hippocrates found a new approach - equating the problem to the constructibility of a number - the square root of 2 .
v 3. Roughly 2000 years later, this was shown to be impossible.
a. Pierre Wantzel (1837)
b. https://www.ams.org/journals/bull/1918-24-07/S0002-9904-1918-03088-7/ S0002-9904-1918-03088-7.pdf
v c. Wantzel's work initially went unnoticed, mentioned once in 1871, and was finally picked up around 1920 !
v i. In Gauss's words, such results were of interest only in so far as they would prevent mathematicians from wasting their time trying to do impossible mathematics.
3. Article on Why Wantzel was overlooked:
https://www.sciencedirect.com/science/article/pii/So31508600900010X
ii. The dominant paradigm in Wantzel's day: constructive \& quantitative
iii. Eventually, well known mathematician's Abel \& Cauchy pushed the paradigm into more qualitative \& conceptual areas
iv. By then, Wantzel's name had been forgotten.
d. In this work he also proved the impossibility of trisecting an arbitrary angle.
e. With Lindemann's work in 1877, the circle could not be squared - but the way it seemed to be framed was: pi is transcendental - this is different from what Wantzel did (he showed a cubic polynomial is irreducible over Q.

Duplicating the Cube

a
5
$2 a$

Hippocrates (400 BC) reduced the problem to
given lengths, aa construct proportionals r, s such that $a / r=r / s=s / 2 a$

$$
\frac{a}{r}=\frac{r}{s}=\frac{s}{2 a}
$$

(1) cross-multiply

$$
r^{2}=a s
$$

(4) cross melt $2^{\text {nd }}$ last

$$
2 a r=s^{2}
$$

(2) cross-mult First / Last $2 a^{2}=r s$

(5) Cancel

$$
r^{3}=2 a^{3}
$$

$$
r=\sqrt[3]{2} a
$$

This means we need to construct a new segment that is cube root of 2 as long as segment a.

This turns out to be impossible
w/ compass a straishtedg.

Pierre Wantzel:
France-1830

PIERRE LAURENT WANTZEL.
[April,
"Wantzel." Pinet says of him: "Endowed with extreme vivacity of impressions and with truly universal aptitudes, he carried off the prize for a French dissertation and a Latin dissertation at a general competition and, the year following (1832), entered with first rank the Polytechnic School-a double success before unheard of. He studied with inveterate zeal German and Scotch philosophers; he threw himself into mathematics, philosophy, history, music, and into controversy, exhibiting everywhere equal superiority of mind." He became élève-ingénieur des Ponts et Chaussées, then ingénieur; he was appointed répétiteur about the time when such positions were held by Comte, Transon, Bertrand, Bonnet, Catalan, Leverrier, and Delaunay. In 1843 he became examinateur d'admission. Saint-Venant says of him: "He was blameworthy for having been too rebellious to the counsels of prudence and of friendship. Ordinarily he worked evenings, not lying down until late; then he read, and took only a few hours of troubled sleep, making alternately wrong use of coffee and opium, and taking his meals at irregular hours until he was married. He put unlimited trust in his constitution, very strong by nature, which he taunted at pleasure by all sorts of abuse. He brought sadness to those who mourn his premature death."

The Royal Society Catalogue of Scientific Papers quotes the titles of 18 papers by Wantzel, and of three more which he brought out jointly with Saint-Venant.

Read More

- https://www.ams.org/journals/bull/1918-24-07/

S0002-9904-1918-03088-7/S0002-9904-1918-03088-7.pdf

Read More

1. Article on Why Wantzel was overlooked:
https:///www.sciencedirect.com/science/article/pii/S031508600900010X
