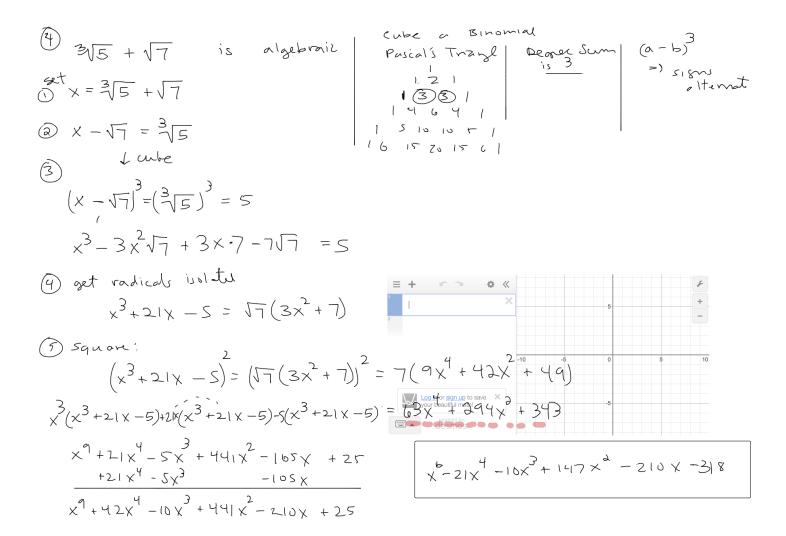
MA484 WIL 3 Frei

Algebraic Numbers

$$x^{*}$$
 there exists"
 $a47$ is algebraic $b/c = 3$ ~ poly with coeffs "that kills' 247
 $f(x) = x - 247$ kills 247
 $f(x)$



$$\frac{1}{3\sqrt{5} + \sqrt{7}}$$
 is als.

$$X = \frac{1}{3\sqrt{5} + \sqrt{7}}$$
 cross $3\sqrt{5} \cdot \chi + \sqrt{7} \chi = 1$ repeat ...

$$\begin{aligned} & \#_{10} \\ & \#_{10} \\ & \#_{10} \\ & = (x-3)(x-4) \\ & \#_{10} \\ & \#_{10} \\ & = (x-3)(x-4) \\ & \#_{10} \\ & \#_{$$