Other Geometrically Constructible Numbers

- ▼1. Definition
 - a. Length of constructible segment
 - b. Equivalently, x-coordinate of a constructible point
 - c. Points are intersections of constructible segments
- ▼2. Given segments with length **a**,**b** construct segments of length:
 - a. **ab**

b. **a/b**

- c. \sqrt{a}
- \checkmark 3. The problems above require these antique tools
 - a. Intercept Theorem (Thales)
 - b. Geometric Mean Theorem (Euclid)

Notation: For a triangle the vertical bars $(| \dots |)$ denote its area and for a line segment its length. Proof: Since $CA \parallel BD$, the altitudes of $\triangle CDA$ and $\triangle CBA$ are of equal length. As those triangles share the same baseline, their areas are identical. So we have $|\triangle CDA| = |\triangle CBA|$ and therefore $|\triangle SCB| = |\triangle SDA|$ as well. This yields $|\underline{\triangle SCA|}| = |\underline{\triangle CBA}|$ and $|\underline{\triangle SCA|}| = |\underline{\triangle SCA}|$ $|\underline{\triangle CDA|}| = |\underline{\triangle CBA}|$ and $|\underline{\triangle SCA|}| = |\underline{\triangle SCA|}|$ $|\underline{\triangle CDA|}| = |\underline{\triangle CBA|}|$ and $|\underline{\triangle SCA|}| = |\underline{\triangle SCA|}|$ Plugging in the formula for triangle areas ($\underline{baseline-altitude} \\ 2$) transforms that into $|\underline{SC}||AF|| = |\underline{SA}||\underline{EC}||$ and $|\underline{SC}||AF|| = |\underline{SA}||\underline{EC}||$ Canceling the common factors results in: (a) $|\underline{SC}|| = |\underline{SA}||$ and (b) $|\underline{SC}|| = |\underline{SA}||$ Now use (b) to replace |SA| and |SC|| in (a): $\frac{|\underline{SB}||SC||}{|\overline{SD}||} = \frac{|\underline{SB}||SC||}{|\overline{AB}||}$ Using (b) again this simplifies to: (c) $|\underline{SD}|| = |\underline{SB}||$

Thales' Intercept Theorem and ab and a/b

To construct a segment of length 5, draw a circle of radius 3, raise a perpendicular off the diameter at 1 unit away from edge. You raised root 5. yeah.

Use Geometric Mean Theorem to construct \sqrt{p}

 $=h=\sqrt{pq}$ so $h=\sqrt{p}$

And speaking of Thales' theorem, it is a special case of

The Inscribed Angle Theorem

The angle on the boundary of a circle is twice that at the center.

When theta = 90, the angle at the center is 180, so the angle is on a diameter.

Inscribed angle in Desmos

https://www.desmos.com/calculator/8anwclpi4d

Thm: psi = 2 theta

pf: triangle angle sum / supplementary

