Other Geometrically Constructible Numbers

\checkmark 1. Definition
a. Length of constructible segment
b. Equivalently, x-coordinate of a constructible point
c. Points are intersections of constructible segments
v 2. Given segments with length \mathbf{a}, \mathbf{b} construct segments of length:
a. ab
b. \mathbf{a} / \mathbf{b}
c. \sqrt{a}
\checkmark 3. The problems above require these antique tools
a. Intercept Theorem (Thales)
b. Geometric Mean Theorem (Euclid)

Intercept Theorem - equivalent to the theorem of Similar triangles -

$$
\begin{aligned}
& \frac{S C}{C D}=\frac{S A}{A B} \\
& \frac{S C}{S D}=\frac{S A}{S B} \\
& \frac{S D}{S C}=\frac{S B}{S A}
\end{aligned}
$$

and

Note:

$$
\stackrel{\text { HAte: }}{\stackrel{A C}{\longrightarrow}} \| \overrightarrow{D B}
$$

(1) Blue: base $\}$ two Δ 's
Green: height $|\triangle A C D|=|\triangle A B C|$
(2) $\begin{aligned} &|\triangle C D A|=|\triangle C B A| \\ & \mid \\ &|\triangle S D A|=|\triangle S C B|\end{aligned}$
$|\triangle S D A|=|\triangle S C B|$

Notation: For a triangle the vertical bars $(|\ldots|)$ denote its area and for a line segment its length.

Proof: Since $C A \| B D$, the altitudes of $\triangle C D A$ and $\triangle C B A$ are of equal length. As those triangles share the same baseline, their areas are identical. So we have $|\triangle C D A|=|\triangle C B A|$ and therefore $|\triangle S C B|=|\triangle S D A|$ as well. This yields
$\frac{|\triangle S C A|}{|\triangle C D A|}=\frac{|\triangle S C A|}{|\triangle C B A|}$ and $\frac{|\triangle S C A|}{|\triangle S D A|}=\frac{|\triangle S C A|}{|\triangle S C B|}$

Plugging in the formula for triangle areas ($\frac{\text { baseline -altitude }}{2}$) transforms that into
$\frac{|S C||A F|}{|C D||A F|}=\frac{|S A||E C|}{|A B||E C|}$ and $\frac{|S C||A F|}{|S D||A F|}=\frac{|S A||E C|}{|S B||E C|}$
Canceling the common factors results in:
(a) $\frac{|S C|}{|C D|}=\frac{|S A|}{|A B|}$ and (b) $\frac{|S C|}{|S D|}=\frac{|S A|}{|S B|}$

Now use (b) to replace $|S A|$ and $|S C|$ in (a): $\frac{\frac{|S A||S D|}{|S B|}}{|C D|}=\frac{\frac{|S B||S C|}{|S D|}}{|A B|}$
Using (b) again this simplifies to: (c) $\frac{|S D|}{|C D|}=\frac{|S B|}{|A B|} \square$

Draw an additional parallel to $S D$ through A . This parallel intersects $B D$ in G .
Then one has $|A C|=|D G|$ and due to claim $1 \frac{|S A|}{|S B|}=\frac{|D G|}{|B D|}$ and
therefore $\frac{|S A|}{|S B|}=\frac{|A C|}{|B D|}$

"S"

Thales' Intercept Theorem and ab and a / b
31 幺 $21 \Rightarrow$ Construct a segment of length 31.21=651

31

Can you construct a segment of length $\frac{a}{b}$?

$$
\begin{aligned}
& \frac{|a|}{|b|}=\frac{|x|}{1} \\
& |x|=\frac{|a|}{|b|}
\end{aligned}
$$

The geometric mean theorem

$$
\left\{\begin{array}{c}
\text { use similar } \Delta ' s \text { to } \\
\text { show } h=\sqrt{p q}
\end{array}\right\}
$$

$$
\begin{aligned}
& h^{2}=p q \\
& h=\sqrt{p q}
\end{aligned}
$$

Les of length $\sqrt{5}$

$$
\sqrt{5}=\sqrt{5 \cdot 1} \text {, set } p=5, q=1
$$

To construct a segment of length 5, draw a circle of radius 3 , raise a perpendicular off the diameter at 1 unit away from edge. You raised root 5. yeah.

Use Geometric Mean Theorem to construct \sqrt{p}

Let $q=1$, then radius is $\frac{p+1}{2}$
$\frac{1}{4} h=\sqrt{p q}$ so $h=\sqrt{p}$

And speaking of Thales' theorem, it is a special case of

The Inscribed Angle Theorem

The angle on the boundary of a circle is twice that at the center.
When theta $=90$, the angle at the center is 180 , so the angle is on a diameter.
Inscribed angle in Desmos
https://www.desmos.com/calculator/8anwclpi4d
Thm: psi $=2$ theta
pf: triangle angle sum / supplementary

