Euclid's Proof of the Pythagorean Theorem

v 1. Greece flourished in the 150 years between Hippocrates \& Euclid.
v a. Plato (427 BC) and his student Eudoxus (408 BC) led the way
i. Many sophists (clever know-it-alls who taught for money) wandered the land - some brilliant, some quacks
ii. Socrates' disciple was Plato, and his student was Aristotle
vb. Plato traveled until age 40, then founded the Academy in Athens. The intellectual center of the world, headquarters of Greek wisdom.
i. Learned from the Pythagoreans in Italy, visited Egypt, etc. Sold as a slave, but then ransomed by his friends.
ii. His school is the spiritual ancestor of our institution of higher learning, the land had belonged to the hero Akademos.
iii. As was custom, to establish legitimacy the Academy was a "religious brotherhood" worshiping the Muses
iv. For 900 years it stood as intellectual center of Greece until 529 AD, was closed b/c it was "pagan" and of "perverse learning"
v. Math was king, Geometry was required for entrance.
i. Plato disliked "applied mathematics" and geometric instruments, embracing only the straightedge and compas
v d. Eudoxus was poor, commuted in to Athens, and had two main pieces of mathematics, was 2nd only to Archimedes
v i. Theory of proportion

1. Many proofs of "similar triangles have equal ratios of corresponding sides" required the (false) commensurability of numbers.
2. Eudoxus' devised a proof that did not appeal to commensurability.
3. His proof is found in Book V of the Elements (Euclid didn't prove everything there.)
vii. Method of Exhaustion
4. Main idea of limits/calculus.
5. Archimedes used/credited Eudoxus' idea to find the area of a circle.
ve . Alexander the Great \& Alexandria
i. 332 BC Alex (20 y/o from Macedonia) conquered Egypt, established a new city Alexandria
ii. Alexandria grew while Alex "conquered the world" and became the intellectual center
iii. 500 K people and 600 K (really?) Papyrus rods, Alexandrian Library \& Museum > Academy,
iv. The Museum (the oldest university) was heaven on earth for thinkers, food, space community.
v. Alex conquered Greece, Egypt, most of Asia Minor, and died trying to capture India.
vi. Alexandria remained central \& powerful for 300 years - the Hellenistic (Greek-like) age, until the Roman Empire.
vii. $300-100 \mathrm{BC}$ is the 2nd most mathematically productive era ever. \#1 = Kepler - Gauss (1600-1850)
viii. Archimedes, Eratosthenes, Apollonius Pappus, Claudius Ptolemy, Diophantus \& Euclid all worked here at some time.

Euclid's Proof of the Pythagorean Theorem

v 1. Euclid came to Alexandria to establish a school of mathematics (300 BC)
a. Trained at the Academy, but hereafter Greek mathematics had Alexandrian roots
b. Founded a school in Alexandria
v. Two Euclidean stories
vi. King Ptolemy asked about a shorter way to learn geometry than reading The Elements

1. "There is no royal road to geometry"
Vii. A young student asks Euclid: "But what shall I get by learning these things?"
2. Euclid points out that knowledge is useful for its own sake then ...
v 2. Says to servant, "Give this man a coin, since he must make a profit form what he learns"
a. This might come from the Pythagorean slogan, "A diagram and a step (in knowledge), not a diagram and a coin."
vd. The Elements of Geometry - only the Bible has been studied more
i. "The most splendid creation of the Greek mind" - Burton
ii. 13 books, 435 propositions, 2000+ editions, essential to a liberal education
iii. plane/solid geometry \& number theory
viv. He organized geometric knowledge beautifully, clearly, all stemming from a few basic assumptions - axiomatically
3. 5 geometric postulates, 5 common notions, 23 definitions $=435$ propositions
4. the choice of axioms, the arrangement of the propositions, the rigor of demonstration are his own and is amazing
5. a minimum of assumptions and very little that is superfluous
v. No circular reasoning - required axioms (assumed without proof)
vi. When Rome fell, Arab scholars carried it to Baghdad, reappeared in the Renaissance,
vii. Studied by Newton \& Leibniz, Napoleon, Lincoln (40 y/o read to train his logical approach, Bertrand Russell

Plato-Academu@Athens
Lasted 900 years \rightarrow until Romars

Eudoxus - 408 BC

1. Exhanstion
2. proportion $\begin{aligned} & \text { Lioff } \\ & \text { Ippears in Euclid's Elements book } V \text {, }\end{aligned}$

knew that similar s's were
proportion e

no le all lengths are commensurate (rationality of the real \#'s
\Longrightarrow Similar D. Theveren" holds.

Filled in this gap No ore doubted the similar Δ the, but when $\sqrt{2} \neq \frac{a}{b}$, this invalidated the prof of Sim. D. The

- Endoxus proved this wo using commensurability,
- This proof is found in Book V of the Elements.

500K people $\$ 600 \mathrm{~K}$ Papinus rods

19th century depiction of Library @ Alexandria

People who studied (c) Libroy of Alexandni

- Archimedes
- Erastos thenes
- Pappus
- Ptolemz
- Diaphantus
- Eudia

The Librann (a) Alexandro Enclid: coin story.

Common Notions

Common notion 1.

Things which equal the same thing also equal one another.

Common notion 2.

If equals are added to equals, then the wholes are equal.

Common notion 3.

If equals are subtracted from equals, then the remainders are equal.

Common notion 4.

Things which coincide with one another equal one another.

Common notion 5.

The whole is greater than the part.

Euclid-Book I

v1. Preliminaries
v a. Got to start some place
i. Point: That which has no part
ii. Line: Breadthless width
iii. Straight line: A line that lies evenly between its points
v b. Modern Geometry
i. Point, Line are undefined terms
v c. Other definitions
i. Right - when a line stands on another and the adjacent angles are equal
ii. No mention of angles in the Elements
iii. Parallel - when two straight lines do not meet
v d. The Postulates
i. Two points determine a line
ii. Lines can be extended arbitrarily
iii. A center and distance (radius) determine a circle
iv. All right angles are equal
v. If a line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

A page from the rst printed edition of Euclid's Elements. Published in Latin in 1482. (Courtesy of Burndy Library.)

Euclid's Elements - Book I
-1. Propositions 1-26
va. Triangle Congruence
\rightarrow i. SAS
ii. SSS \& ASA follow from SAS
vb. Constructing perpendiculars
i. It is implied that exactly ONE pert can be constructed
v. Isosceles triangles
i. Base angles are equal
ii. The last proposition of Euclid taught in the Middle Ages
viii. Flight of the fools

1. Students abandoned geometry afterward
v iv. Bridge of Asses
2. The proof's figure esembled a bridge, and stumped many
3. Euclid's proof was complicated, Proclus' shorter, Pappus' was flip

マ 2. Propositions $27+$: Parallels
va. AIA congruent implies parallel
i. doesn't use I.V
b. Parallel lines CAN be constructed without I.V

Vc. Sum of angles is 2 right angles (180 degrees)
i. requires I.V.
v d. Many pieces of geometry rely on I.V.
i. Quadrilaterals

$$
\left.\begin{array}{c}
\beta \\
\alpha \gamma
\end{array} \begin{array}{c}
\alpha+\beta+\gamma=180^{\circ} \\
\text { uses I.V. }
\end{array}\right\} \begin{gathered}
\text { Euclidean } \\
\text { Geometry. }
\end{gathered}
$$

Lelbniz

Napolear

$$
\text { snow }|A B|^{2}=|A C|^{2}+|B C|^{2}
$$

Idea:

> Blue Area \square Red Rectangle Green $\square=$ Pink $\$$

