

Euclid's Elements - Book I
▼1. Propositions 1 - 26
▼a. Triangle Congruence
▼i. SAS \
▼ 1. Uses superposition - moving one object onto another to define congruence.
▼ a. What is superposition?
i. group theory - Charles Dodgson (Lewis Carrol) would say no!
2. Modern development: SAS is an axiom
ii. SSS & ASA follow from SAS
▼ b. Constructing perpendiculars
i. It is implied that exactly ONE perp can be constructed
▼ c. Isosceles triangles
i. Base angles are equal
ii. The last proposition of Euclid taught in the Middle Ages
▼ iii. Flight of the fools
1. Students abandoned geometry afterward
▼ iv. Bridge of Asses - pons asinorum
1. The proof's figure esembled a bridge, and stumped many
2. Euclid's proof was complicated, Proclus' shorter, Pappus' was flip it "Irish Bull"
▼2. Propositions 27+ : Parallels
▼ a. AIA congruent implies parallel
i. doesn't use V
b. Parallel lines CAN be constructed without V
▼ c. Sum of angles is 2 right angles (180 degrees)
i. requires V.
▼ d. Many pieces of geometry rely on V.
i. Quadrilaterals

 $\frac{\alpha}{\beta}$ $\frac{\beta}{\beta}$ $\frac{\beta}{\alpha} \chi + \beta + \gamma = 150^{\circ} \int Euclidean$ $\frac{\beta}{\alpha} \chi + \beta + \gamma = 150^{\circ} \int Euclidean$ $\frac{\beta}{\alpha} \chi + \beta + \gamma = 150^{\circ} \int Euclidean$ $\frac{\beta}{\alpha} \chi + \beta + \gamma = 150^{\circ} \int Euclidean$

AIA theorems -- l + m ① if l || m is they're intersected by t ⇒ AIA's are equal Assume: IIIm. Show &= B. Q if not (x = 13) then assume x > B. K/ 8 Since X+X = 180° (2RA') β m B+8<180° (2RAj) Ł Ry Euclid's =) I must meet my (X) AlA's are = then the lines are () IR 2 Assume: x = B, & the lines intersed @ C. this forms a triangle of which a is an exterior angle K Ext, Angle =) X>B. β £

Lincoln

Napolean

Bertrand Russell

ALTERNATE FNTERIOR ANGLES ----

(Note, the proof above did NOT use the parallel postulate, and is true in NEUTRAL geometry (both)

Prop (2.9) If two lines
$$k$$
, m are parallel then their AIA's are equal,
proof.
 $\frac{\sqrt{8}}{8}$ k $\frac{487}{8}$ k $\frac{180}{180}$
 $\frac{1}{8}$ $\frac{1$

As