$$
\mathrm{Ch} \cdot 3
$$

what is radian measure?
arc length, on the unit circh has
 length θ why?

$$
\begin{aligned}
& \angle C C B E=2 \angle C A B \\
& \angle E B D=2 \angle B A D \\
& + \\
& \begin{aligned}
\beta= & \angle C B D \\
\quad \angle C B E+\angle E B D & =2 \angle C A B+2 \angle B A D \\
& =2(\angle C A B+\angle B A D) \\
& =2 \alpha
\end{aligned}
\end{aligned}
$$

unit circle

Euclidean Exterior Angle Theorem:

$$
\delta=\gamma+B
$$

sum of remote

Assume $\alpha+\gamma+\beta=180$
Fact δ is exterior angl to \triangle Supplementary Angles.

$$
\begin{aligned}
\delta+\alpha & =180 \\
\alpha & =180-8
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow 180-\delta+\gamma+\beta=180 \\
\gamma+B=\delta
\end{gathered}
$$

use the result above to show $\alpha=B$.

From the proposition, each is $\frac{1}{2}$ the anger $\angle B A C$
use this result ${ }^{\text {use }}$ to prove the following about
 opposite angles in a uscribed quadrilateral α, β are opp. angles $\frac{1}{4}$

$$
\alpha+\beta=180
$$

For are $C B$, it's subtendal both $\angle C D B \quad \frac{1}{4}<B A C$ which are equal by the above.
show $\alpha+\beta=180$
Euclidean $\Rightarrow \beta+\angle B D C+\angle D C B=180$
we know: $\angle B D C=\angle C A B$
$\angle D A B=\angle D C B$ (subtend arc $D B$)
so $B+\underbrace{\angle C A B+\angle D A B}=180$

$$
\beta+\alpha=180
$$

Two clever constructions for inscribed pentagon

Euclid.
Begin:

$$
\begin{aligned}
\alpha+2 \alpha+2 \alpha & =180^{-} \\
5 \alpha & =180 \\
\alpha & =36^{\circ}=\frac{\pi}{5}
\end{aligned}
$$

isosceles
base angles twice the top angle
third the base of the D is one edge of the $\hat{\rightharpoonup}$.

Fourth compass a ore vertex ul radius the other vertex intersect an are with the cire

Next Take a given circle

and place a triangle similar to the ore on left as shown.

Richmond's Construction (1893)

1. From center make radius $\frac{1}{n}$ taka 1 @center
$=$ Bisect AD
2. Form EB
3. Bisect the angle $\angle B E A$, form $E F$
4. Raise t from F, intersect circle © G
5. segment $B G$ is a side of the \longrightarrow
