Monday

1. Homework Hints
2. Proofs from Elements Book 1
3. AIA \& Hyperbolic Geometry

Last Time:

$$
\begin{gathered}
\alpha>A \\
o r \\
\alpha>B
\end{gathered}
$$

Neutral then
show this: $\alpha>A$

(5) $\Rightarrow \angle \delta=\angle A$
(6) Finish: Extend eb, get γ a vertical angle of $\delta, \quad(\gamma=\delta$

$$
\alpha>\gamma=\delta=A
$$

AAS - theorem
this proof could have easier, but © cost of introducing more tools

Assume

$$
\begin{aligned}
& \angle \alpha=<\beta \\
& <\delta=<\gamma \\
& A B=D E
\end{aligned}
$$

proof use ext, angle theorem
If $E F \cong B C$, dore by $S A S$ else assume $|B C|>|E F|$, choose G on $B C$ sit $B G \cong E F$ Form $G A$. Now $\triangle G B A \cong \triangle F E D \Rightarrow<\epsilon=<B$ Ext. Ans thin $\Rightarrow \epsilon>\alpha$ yet $\angle \epsilon=\angle B=\angle \alpha$ assumpter

$$
\Rightarrow
$$

$$
E F \cong B C \text {, so bn } S A S, \triangle A B C=\triangle D E F
$$

alternate fnteriur angles

lines $k, m \frac{1}{4}$ transversal l make alt. int, angles AIA's

Prop 1: If AIA's are equal then the two lines are parallel, proofs.

Assure angle $\alpha=B$, l is transverse or $m{ }_{\xi} k$. Also assume k and m intersect, $(Q$

Now $\alpha+\gamma=180^{\circ}$
so $\beta+\gamma=180^{\circ}$
Now $\triangle D C E$ has an extenior angle α. By the Ext. Angle the $\alpha>B, X$ s E cannot $e x 15 t . \Rightarrow k \| m$
(. Note, the proof above did NOT use the parallel
postulate, and is true in NEUTRAL geometry (both)
Prop (2.9) If two lines k, m are parallel then their AI A's are equal, proof.

$$
\alpha+\gamma=180
$$

If $\alpha \neq \beta$ the $\alpha>B$

$$
\begin{aligned}
& \alpha+\gamma=180^{\circ} \\
& \beta+\gamma<180^{\circ} \\
& \Rightarrow \text { Euclidi I.V. } \Rightarrow \\
& \text { same sion int } \\
& \text { angle add to } 180^{\circ} \\
& \quad \text { less the }
\end{aligned} \Rightarrow \text { lines } \begin{aligned}
& \text { intersect }
\end{aligned}
$$

Conclusion: $\alpha=\beta$
As

Prop. 1.27 If AlA's are $=$ then the lines are parallel. (true in neutral geometry (Euclidean, hyperbsiz, spherical)

transversal

Hyperbolic Geometry

Assume $<1=<2$
If $A B$ meets $C D$, call that point G. this gives $\triangle F G B$ un ext. angle <2 that is $=$ to interior angle <1

the P that are Il to l

Desmos Link:
https://www.desmos.com/calculator/1zyij1hbak

