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Golden Ratio in Regular Pentagon 21
R P =
The golden ratio, ¢ = 1+—2\/§ makes frequent and often unexpected appearance in geometry. Regular pentagon - 71 ;

the pentagram - is one of the places where the golden ratio appears in abundance.

D

A B

To mention a few (some of which have been proved elsewhere, others are straightforward):

l / o+ - o
. & ay -~ %—'_\

Cos(72')
(I— wsT2°)

DE _EX UV _EY BE _
EX ~ XY XY EX AE

=M=

-

s .
ym, - = o7
sSan| = —
(¥ = =
cos(AI) - cos(2«—43) :cos(sl)
. 5 5 L= - e
SDif:c:Zg:
cos(2z) = cos(3z) shn ( W/S-)

Replacing the cos(2x) and cos(3x) by their general formulae:

\ cos(2z) = 2cos’z — 1 and cos(3z) = 4cos’z — 3cosz,
.1. ( 2T j - = we get:
= =
ws Z NS 2008z — 1 = 4cos’ z — Bcosz

| Replacing cos z by y:
& - @ —_— 4y° -2 —By—1=0
2T,
;2 CQ.S( /() -1y’ +2y-1) =0

‘We know that y # 1, so we have to solve the quadratic part:

—2+4/2" —4.4-(-1)

v= 24

-2+ 20
vE—w



Golden Ratio in Regular Pentagon
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2
the pentagram - is one of the places where the golden ratio appears in abundance.

L Whole = [/0\/\% + Short

The golden ratio, ¢p = , makes frequent and often unexpected appearance in geometry. Regular pentagon -
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Tan ]
A B

To mention a few (some of which have been proved elsewhere, others are straightforward):

DE _EX UV B BE _

EX xr xy mx_ag- ¥
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