Fact: AAS, ASA, $S A S, S S S$ are true in all

Epilogue: The Parallel Postulate
v 1. It was thought: "Perhaps this should NOT be a postulate, but a theorem"
a. Postulates I-IV imply 4 triangle congruence theorems, why not this fact about parallels?
v. The transcendence of Euclidean geometry was as significant as when Copernicus showed us that the Earth was not the center of the universe. i. "changes in conception of the cosmos"
c. non-Euclidean geometry is the foundation of Einstein's theory of relativity
-2. Equivalents to I.V.

- 3. Early 1800's : three mathematicians to the rescue

AAA \Rightarrow the s's are similar $\frac{1}{}$ rate of corresp, sides sere equal

Prop. (Lobachevsky) Assuring "AAH" acute angle hypothesis, If two Δ 's have identic angles theyive congruent.

Ex π^{+}

Observe $\square G B C H$ contains 360°, But next decompose ate t's. this leads to a contradiztio.

Epilogue: The Parallel Postulate

- 1. It was thought: "Perhaps this should NOT be a postulate, but a theorem"
a. Postulates I-IV imply 4 triangle congruence theorems, why not this fact about parallels?
v. The transcendence of Euclidean geometry was as significant as when Copernicus showed us that the Earth was not the center of the universe. i. "changes in conception of the cosmos"
c. non-Euclidean geometry is the foundation of Einstein's theory of relativity
v2. Equivalents to I.V.
a. Proclus' axiom: If a line intersects one of two parallel lines, it must intersect the other
b. Equidistance postulate: parallel lines are everywhere equidistant
c. Playfair's postulate: Given line \& point not on it, there is exactly one line through the point parallel to the line
d. 180 degree angle sum: The sum of the interior angles of a triangle equals 180 degrees.
- 3. Early 1800's : three mathematicians to the rescue
va. Gauss

vii. Recognized the importance of the 180 angle sum

1. ...that the angle sum of a triangle can't be less than 180 degrees ... this is ... the reef on which all the wrecks occur.
viii. In 1824 he had it:
2. "The assumption that the sum of the three angles is less than 180 leads to a curious geometry, quite different than ours, but thoroughly consistent, which I have developed to my entire satisfaction"
viv. But 5 years later he still hadn't published his work - and had no plans to 1. "...I fear the howl of the Boetians if I speak my opinion out loud"

Show 180° triangle angle sum \equiv I.V.
Recall that $I \cdot \bar{V} \Rightarrow$ "Porathel lines $\Rightarrow A \mid A$ "
If two lines I, m are parallel, and t is a transversal, then

Wolfgang Farkus (father) Bolyai - 1775-1856

1. Hungarian
v 2. Worked in geometry / analysis
a. Proved a Convergence Theorem for series (something like ratio test)
b. Spent years attempting to solidify the foundations of geometry

3. Friend of Carl Fredrick Gauss

v4. Famous quotes
va. "When the time is ripe for certain things, these things appear in different places in the manner of violets coming to light in the early spring."
i. This is no doubt influenced by Newton \& Liebniz and likely Gauss, Johann, \& Lobachevsky
b. "You must not attempt this approach to parallels. I know this way to its very end. I have traversed this bottomless night, which extinguished all light and joy of my life ... I entreat you, leave the science of parallels alone." - to his son , - - Farkus Bolyai

Johann Bolyai: 1802-1860

1. Despite father's wishes pushed on with parrallels
2.

- 3. Realized that Euclid's parallel postulate wasn't wrong, or out of place but was IMPOSSIBLE to prove from postulates I - IV
va. If you replaced I.V with it's negation, you get a valid, consistent geometry
i. Congruence theorems still hold
ii. Many constructions are still possible
iii. No contradictions are found

4. "Out of nothing, I have created a strange new universe."
v 5. His father finally got behind him, included this as appendix in a paper in 1832
a. Sent a copy to Gauss
b. Gauss responded: (paraphrased) "I know this is going to sound weird, but I can't say "this is awesome" because it's exactly what l've got in my notes, and I don't want to brag, but l've known this for 35 years. I have worked this out completely already.

Other foundational geometers

v 1. Nikolai Lobachevsky: 1796-1856
a. Actually published similar work 3 years earlier than Bolyai in 1829
$\nabla \mathrm{b}$.

c. Because it was so far ahead of contemporary thought (and in Russian), it was overlooked.
d. Age 8: Father died, Mom moved 3 sons near family in Kazan.
e. Age 14: Scholarship to a New university w/European professors, one was Gauss' former tutor Martin Bartels
f. Became powerful professor \& rector, but clashed with those that tried to turn Kazan into a religious university
g. Hardship: Married in his 40 's, two sons died, brother in law gambled away family money, he spent money doing upgrades on University residence, started to go blind
h. No one would support his ideas, he died @63, basically blind with no recognition
vi. Lobachevsky's teacher / Gauss' tutor is below
v2. Bernhard Riemann: 1826-1866
a.

v. Threw out notion that lines have to be infinite
i. Infinite lines are not implied in Euclid's postulate II
ii. Lines are unbounded, which is different than infinite length
v. This allowed for spherical geometry where lines act as great circles
i. no parallel lines
v 3. Eugenio Beltrami: 1835-1900
va.

b. Proved logical consistency of the different geometries
c. Also discovered the SVD, influence tensor calculus
\mathbf{v}. If Euclidean geometry was consistent, then so was non-Euclidean.
i. So Euclid's I.V was optional, not necessary.

Gymnasium $=$ Prep School
Nikolaí Lobachevsky: 1792-1856

link to Lobachevky's House Museum
link to overview slides on Lobachevky.
overview
original work: theory of parallels
original work: 2
original work: 3
Martin Bartels: teacher

