	—— The	- The Classical Math - And Beyond -		maticians	See: ta	ble of contents		
Agriculture - First Humans to Americas 15,000 BC		1 F	Moscow Papyrus 1850 BC Plimpton 322 1700 BC		- //			
	Thales	Plato		Hippocrates 450 BC		Erastosthene	s	
// —	Pytha 550 B		Eudoxus 400 BC		Euclid 300 BC		Archimedes 225 BC	
			//		Euler 1750			
				Newton 1650		Gauss 1800		

MA484 Fri WK 6

HW Hint #1

Consider the # 10.

10 = 2,5

choose any factor of 10, (say 2) add it to 10! 10+2=12, the result will be composite.

2.5+2

 $a(s+1) \Rightarrow a|1a$.

99 = 3.33

add 33 to 99 = 132 must be composity (divisible by 33)

5! = 5-4.3.2.1 = 120

5! + 3 must be composite 5.4.3.2.1 + 3 = 3(5.4.2 + 1)3151+3

Is there # prime or composit

prime. (b/c/01 is prime) eg, 41+5 24+5 pnm

2!+3 =5

Different (Restricted) ways to write #15

- · Any #, is either a mult, of a (even) or not (old)

 n=ak or n=ak+1
- . Any # has the form e_q , 345 = 3.11s 3k, or 3k + 1, or 3k + 2
- · 4k+1, 4k+) any odd # can be written in one of the two forms
- (Hw) Any #: 6k, 6k+1, 6k+2, 6k+3, 6k+4, 6k+5
 Some are prime candidate, sine not

Pi Journel the Genius

1. Egypt - Rhind Papyrus - $(4/3)^4 = 3.160..$

D=10 C=T.D ≈30

- ▼ 2. Bible: I Kings 7:23
 - a. "Then He made the molten sea, ten cubits from brim to brim, while a line of 30 cubits measured it around."
- ▼ 3. In the 2nd century CE, Ptolemy used the value ³⁷⁷/₁₂₀, the first known approximation accurate to three decimal places. It is equal to 3 + 8/60 + 30/60^2
 - ▶ a. table of chords
- ▼ 4. Chinese: 150 CE
 - a. The Chinese mathematician Liu Hui in 263 CE computed π to between 3.141024 and 3.142708 by inscribing a 96-gon and 192-gon;
- 5. Bhaskara (1110 CE) ... pi = 3.1416
- 6. Simon Stevin (1500 CE) decimal system, helped matters
- ▼7. Francois Viete: (1550 CE)
 - ▶ a. used polygons with 393,216 sides ... 9 decimal places.
 - ▼ b. Ludolph van Ceulen (1600's)
 - i. 35 correct decimal places
 - ii. after years of effort
 - iii. polygon with 2^62 sides. (4 million trillion sides)
 - ▼ c. Leibniz's series: 1 1/3 + 1/5 1/7 + 1/9 1/11 + 1/13 1/15 + ... approximates pi/4
 - i. from geometry to arithmetic
 - ii. approaches slowly
 - iii. after 150 terms only get 3.1349
 - iv. little practical use
 - d. Shart (1650) 71 places, Machin (1680) 100 places
 - e. Lambert (1750) pi is irrational, so no decimal is gonna get it.
- ▼8. Ramanujan (1887-1920)
 - a. poor, self taught, failed out of school,
 - b. was urged to write of his discoveries to England, one sent to G.H. Hardy (Cambridge) (1913)
 - ▼ c. strange formulas, poor English ... it haunted Hardy all day
 - i. "the formulas must be true bc no one has the imagination to invent them.
 - d. travel to England was hard due to religion, diet, but he arrived in Cambridge 1914.
 - e. Highly accurate approximations to pi
 - f. 1919, back to India in poor health.
 - ▼ g. Story of Ramanujan on death bed

The number 1729 is known as the Hardy–Ramanujan number after a famous visit by Hardy to see Ramanujan at a hospital. In Hardy's words:^[76]

I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No", he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."

Immediately before this anecdote, Hardy quoted Littlewood as saying, "Every positive integer was one of [Ramanujan's] personal friends." [77]

The two different ways are:

$$1729 = 1^3 + 12^3 = 9^3 + 10^3.$$

h. Formula for pi

i.

Perfect #: it is the sum of its proper divisors.

1,6,28,120

1+2+3

Euclid: developed a formula (in 300 BC) to produce perfect numbers

then the's by 2"

$$a^{n}(1+2+2^{2}+3^{3}+...+2^{n})$$
 - this produces a perfect

- Every even perfect # has this firm