


(d) Finally, prove that the sum of the measures of the three angles in $\triangle ABC$ is just $\angle FBC + \angle GCB$.

33. Now prove that under HAA, the angle sum of a triangle must be less than 180°.

Let
$$\Delta HBC$$
 be given $\frac{1}{7}$ assume HAA . From $\#32(a) - (d) =)$ \square FBCG is Saccheri
 \Rightarrow Saccherin have acute summer angles
 \Rightarrow $a + \beta + 8 =
 $< 180$$

31. Under HAA, prove that if ABCD is a Saccheri Quadrilateral as shown, then $\overline{AB} \neq \overline{CD}$.

proof: Assume HAA => < ADC < 90, <BCD < 90 ABW OC, assume, by way of contradiction, that DC = AB. Construct: DB diasonal, get two construent D's via usual congruence theorems => corresponding anylos are = ×

(a) For future reference, consider isosceles Δ FGH where $\overline{FG} = \overline{FH} = 1$ and $\overline{GH} = x$. Suppose also that \angle GFH = 36°. Construct GJ bisecting \angle FGH. Use similar triangles to key; Pous Asinovum: Isosceles & =) two angles = 4=>> opposite sides = prove that $x = \frac{\sqrt{5} - 1}{2}$. . and converse · Euclidean => AZ = 180 Eucliduan $36 + \alpha + \beta = 180$ $5 + \beta = (50)$ $5 + 3\alpha = 180$ $5 = 2\alpha = 0.263 H$ 1 = 260 = 0.25 H 1Ъх 1 Similar d's : =) AFJG SFHG NAGJH So JH = 1-12 l sos celes $\frac{1}{x} = \frac{1000}{5hort} = \frac{1000}{5hort} = \frac{1}{1-x}$) =) FT= x cross-inhilf solve $\gamma c^2 = (-\gamma c)$ $\gamma c = \frac{\sqrt{5}-1}{2}$

44. Explain how you could find 100 consecutive numbers, none of which is prime. How about a billion consecutive non-primes? (HINT: Factorials!)

$$5! = 5 \cdot 4.3.2 \cdot 1 = 120$$

$$I \ claim: \ 120 + 1, \ 120 + 3, \ 124, \ 125 \longrightarrow NONE \ are \ prime \\ 5.4.3.2.1 + 1 \longrightarrow 5.4.3.2.1 + 2 \qquad 5.4.3.2.1 + 3 \qquad 4(5 \cdot 3.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 3(5.4.2 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 3(5.4.2 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.2 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.4 + 1) \\ 1 \ 2(5.4.3 + 1) \qquad 3(5.4.4 + 1) \\ 1 \ 2(5.4.4 + 1) \qquad 3(5.4.4 + 1) \qquad 3(5.4.4 + 1) \\ 1 \ 2(5.4.4 + 1) \qquad 3(5.4.4 + 1) \qquad 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1) \ 3(5.4.4 + 1)$$