\#3
(a) If $m \in \mathbb{Z}^{+}$, every prime factor of m occurs an even \# of times in m^{2}. let $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots . . . p_{m}^{k_{m}}$.
Then

$$
m^{2}=\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots \cdot \cdot p_{m}^{k_{m}}\right)^{2}=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots \cdot p_{m}^{k_{m}} \cdot p_{1}^{k_{1}} p_{2}^{k_{2}} \cdot \ldots \cdot p_{m}^{k_{m}}=p_{1}^{2 k_{1}} p_{2}^{2 k_{2}} \cdot \ldots \cdot p_{m}^{2 \cdot k_{m}}
$$

Note p_{i} occurs $2 k_{i}$ times $\frac{1}{2} k_{1}$ is even.
(b) Suppose $\sqrt{2} \in \mathbb{Q}$. Then $\sqrt{2}=\frac{a}{b}, w / a, b \in \mathbb{R}^{+}$.

Squaring $\Rightarrow 2=\frac{a^{2}}{b^{2}}$ or $a^{2}=2 b^{2}$.
since $a \in \mathbb{L}, a^{2}$ has an even \# of primes, in partientar, an even \# of 2 's.
Also, $b \in \mathbb{I}^{+}$, the same applies to b^{2},
so b^{2} contains on even \# of copies of 2 . But then $2 b^{2}$ must have an odd \# of 2 's. So a^{2} has a factorization into an odd \# of primes. this contradicts the unique factoringation theorem.
4.
(a) Area $\triangle A O C: \frac{1}{2} r \cdot r=\frac{r^{2}}{2}$

(b)

$$
\begin{aligned}
E_{A}^{F}: & \frac{1}{4}\left(\pi r^{2}\right)-\frac{r^{2}}{2} \\
= & \frac{\pi r^{2}-2 r^{2}}{4}=\frac{r^{2}(\pi-2)}{4}
\end{aligned}
$$

(c) Area of $A_{D}^{E} C^{2} \frac{1}{2} \pi\left(\frac{D}{2}\right)^{2}=\frac{1}{2} \pi\left(\frac{D}{2}\right)^{2}=\frac{\pi \cdot D^{2}}{8}$

$$
\left\{\begin{array}{l}
D^{2}=r^{2}+r^{2} \\
D^{2}=2 r^{2} \\
D=\sqrt{2} \cdot r
\end{array}\right.
$$

$$
\begin{aligned}
\frac{1}{2} \pi\left(\frac{D}{2}\right)^{2}=\frac{1}{2} \pi\left(\frac{D}{2}\right)^{2} & =\frac{\pi \cdot D^{2}}{8} \\
& =\frac{\pi \cdot 2 r^{2}}{8} \\
& =\frac{\pi r^{2}}{4}
\end{aligned}
$$

(e) Triangle $\triangle A O C$ has the same area as the lune. since this triangle is quadrable so is the lune.
b) Area of
(d) Area of lune $\int_{A}^{M_{C}}$:

$$
\begin{aligned}
=\underset{(c)}{\operatorname{semi}(c i r d e}-\frac{m}{(b)} & =\frac{\pi r^{2}}{4}-\frac{r^{2}(\pi-2)}{4} \\
& =\frac{\pi r^{2}-\pi r^{2}+2 r^{2}}{4} \\
& =\frac{r^{2}}{2}
\end{aligned}
$$

5.

(a)
$\begin{aligned} & \text { Tobel } \\ & \text { Semi-Crde Area }\end{aligned}$
$4 \cdot \frac{\pi r^{2}}{2}=2 \pi r^{2}$
(b)
\Rightarrow Area of Circumscirbed cirde

$$
\pi(\sqrt{2} r)^{2}=2 \pi r^{2}
$$

(c)

so
Thus a single lune is quadrable ble it has the sare area as the erange square, which is constructable as an r by r square.

