*7
Show $x=\sqrt[3]{3}+\sqrt{2}$ is algebraic. (hat does this mean? of sone polynomi
of with integer coifs)
(idea: try an caster ore) similarly:
$x=\sqrt{2}$ is alspbaxe.

$$
x^{2}=2
$$

$$
x^{2}-2=0
$$

$$
\left|\begin{array}{l}
\text { similar }> \\
(x-\sqrt{2})=\sqrt[3]{3} \\
(x-\sqrt{2})^{3}=3
\end{array}\right| \quad \begin{array}{r}
x^{3}-3 x^{2} \cdot \sqrt{2}+3 x \cdot 2-2^{3 / 2}=3 \\
(\sqrt{2})^{3}=\left(2^{\prime \prime 2}\right)^{3}
\end{array}
$$

(expand.
(I) store C 3
(II) degree sum of each term is 3
(II)
signs alternate.

$$
(a-b)^{3}=a^{3}-a^{2} b+a b^{2}-b^{3}
$$

coeffs.

$$
x^{3}-3 x^{2} \cdot \sqrt{2}+3 x \cdot 2-\left(2^{3 / 2}\right)=3
$$

separate uff/nget into integer / non-ints:

$$
x^{3}+6 x-3=3 \sqrt{2} x^{2}+2 \sqrt{2}=\sqrt{2}\left(3 x^{2}+2\right)
$$

$$
x^{3}+6 x-3=\sqrt{2} \cdot\left(3 x^{2}+2\right)
$$

now square Goth sids

$$
\left(x^{3}-6 x-3\right)^{2}=2\left(3 x^{2}+2\right)^{2}
$$

you can stop here, station,
from this we can expand sections a polynomial in standard for

$$
\begin{aligned}
& \text { (b) } x=\frac{1}{\sqrt[3]{3}+\sqrt{2}} \\
& x(\sqrt[3]{3}+\sqrt{2})=1
\end{aligned}
$$

distruberte ! epanal..

$$
\begin{align*}
& \sqrt[3]{3} \cdot x+\sqrt{2} x=1 \\
& \sqrt[3]{3} x=1-\sqrt{2} x \\
& 3 x^{3}=(1-\sqrt{2} x)^{3} \\
& \text { simitar } \\
& \text { to befree }
\end{align*}
$$

7 (b)
$x=\frac{1}{\sqrt[3]{5}+\sqrt{7}}$ what poly is this a root of?

$$
x(\sqrt[3]{5}+\sqrt{7}) \stackrel{(1)}{=}
$$

(2) 1

$$
x^{3}(\sqrt[3]{5}+\sqrt{7})^{3} \stackrel{(3}{=} x^{3}\left(5+3 \cdot 5^{2 / 3} \sqrt{7}+3 \cdot 5^{1 / 3} \cdot 7+7 \sqrt{7}\right)=1
$$

(4) $5 x^{3}+3 x^{3} \cdot 5^{2 / 3} \cdot 7^{1 / 2}+21 x^{3} \cdot 5^{1 / 3}+7^{3 / 2} x^{3}=1$
(5)

$$
3 x^{3} \cdot 5^{2 / 3} \cdot 7^{1 / 2}+7^{3 / 2} x^{3}=1-5 x^{3}-21 x^{3} \cdot 5^{1 / 3}
$$

(b)

$$
\sqrt{7}\left(3 x^{3} \cdot 5^{2 / 3}+49 x^{3}\right)=\ldots
$$

(7)

$$
\begin{gathered}
7\left(3 x^{3} \cdot 5^{2 / 3}+49 x^{3}\right)^{2}=\left(1-5 x^{3}-21 x^{3} \cdot 5^{1 / 3}\right)^{2} \\
7\left(9 x^{6} \cdot 5^{4 / 3}+6 x^{3} \cdot 5^{2 / 3} \cdot 49 x^{3}+49^{2} x^{6}\right)=\left(1-5 x^{3}\right)^{2}-42\left(1-5 x^{3}\right)\left(x^{3} \cdot 5^{1 / 3}\right)+21^{2} x^{6} \cdot 5^{2 / 3}
\end{gathered}
$$

(8)
$5^{2} \cdot 7^{3} \cdot 6$
$5^{1 / 3}\left[63 x^{6}+5^{2} \cdot 6.7^{3} x^{3}+42\left(1-5 x^{3}\right) x^{3}-21^{2} x^{6} \cdot 5^{2}\right]=1-10 x^{3}+\left(25-7^{3}\right) x^{6}$
cube
(9) $5\left[63 x^{6}+5^{2} \cdot 67 x^{3}+42 x^{3}\left(1-5 x^{3}\right)-21^{2} \cdot 5^{2} \cdot x^{6}\right]^{3}=\left(1-10 x^{3}+\left(25-7^{3}\right) x^{6}\right)^{3}$

7 (b)
$x=\frac{1}{\sqrt[3]{5}+\sqrt{7}}$ what poly is this a root of?

$$
\begin{array}{ll}
x(\sqrt[3]{5}+\sqrt{7})=1 & \text { coss multi. } \\
5^{1 / 3} x+7^{1 / 2} x=1 & \text { distribute } \\
5^{1 / 3} x=1-7^{1 / 2} x & \text { separate } \\
5 x^{3}=\left(1-7^{1 / 2} x\right)^{3} & \text { cube } \\
=1+3.7 x^{2}-3 \cdot 7^{1 / 2}+7^{3 / 2} x^{3} \\
5 x^{3}-21 x^{2}-1=7^{1 / 2}\left(7 x^{3}-3\right) & \\
\left(5 x^{3}-21 x^{2}-1\right)^{2}=7\left(7 x^{3}-3\right)^{2} &
\end{array}
$$

$$
=1+3.7 x^{2}-3.7^{1 / 2}+7^{3 / 2} x^{3} \quad \text { expand }
$$

from here expand / collect

$$
x=\sqrt[3]{2}-\sqrt{3}
$$

Similar to \# 7

$$
\begin{aligned}
(x+\sqrt{3}) & =\sqrt[3]{2} \\
x^{3}+3 x^{2} \sqrt{3}+3 x \cdot 3 & +3 \sqrt{3}=2 \\
x^{3}+9 x-2 & =-3 x^{2} \sqrt{3}-3 \sqrt{3} \\
& =-3 \sqrt{3}\left(x^{2}+1\right) \\
\left(\left(x^{3}+9 x\right)-2\right)^{2} & =27\left(x^{2}+1\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{3}+9 x\right)^{2}-2.2\left(x^{3}+9 x\right)+4=27\left(x^{4}+2 x^{2}+1\right) \\
& x^{6}+18 x^{4}+81 x^{2}-4 x^{3}-36 x+4=27 x^{4}+54 x^{2}+27 \\
& P(x)=x^{6}-9 x^{4}-4 x^{3}+27 x^{2}-36 x-23
\end{aligned}
$$

note: $p(\sqrt[3]{2}-\sqrt{3})=0$

$$
\begin{aligned}
& x=\frac{1}{\sqrt[3]{2}-\sqrt{3} \mid} \begin{array}{l}
x(\sqrt[3]{2}-\sqrt{3})=1 \\
\\
x \cdot \sqrt[3]{2}=x \sqrt{3}+1 \\
2 x^{3}=3 x^{3} \sqrt{3}+9 x^{2}+3 x \sqrt{3}+1 \\
2 x^{3}-9 x^{2}-1=3 x \sqrt{3}\left(x^{2}+1\right) \\
\left(2 x^{3}-9 x^{2}-1\right)^{2}=9 x^{2} \cdot 3 \cdot\left(x^{2}+1\right)^{2} \\
\left(2 x^{3}-9 x^{2}\right)^{2}-2\left(2 x^{3}-9 x^{2}\right)+1=27 x^{2}\left(x^{4}+2 x^{2}+1\right) \\
4 x^{6}-36 x^{5}+81 x^{4}-4 x^{3}+18 x^{2}+1=27 x^{6}+54 x^{4}+27 x^{2}
\end{array} \\
& P(x)=23 x^{6}+36 x^{5}-27 x^{4}+4 x^{3}+9 x^{2}-1
\end{aligned}
$$

kills $\sqrt{3}$

$$
g(x)=f\left(x^{2}\right)=x^{4}-7 x^{2}+12
$$

$g(\sqrt{3})=0 \quad$ (if you square the input, then the new poly evaluates to the dd poly@ the square-root of the input)
double input, vanishes on $1 / 2$ vanishing set of original

$$
\begin{aligned}
h\left(\frac{3}{2}\right)=0 \quad f(2 x) & =(2 x)^{2}-7(2 x)+12 \\
h(x) & =4 x^{2}-14 x+12 \\
h(1.5) & =f(3)=0
\end{aligned}
$$

want

$$
\begin{aligned}
k(4)=0 \quad & (x-1) \\
& =(x-1)^{2}-7(x-1)+12 \\
& =x^{2}-2 x+1-7 x+7+12 \\
f(x) & =x^{2}-9 x+20=(x-5)(x-4) \\
k(4) & =16-36+20=0
\end{aligned}
$$

properties of algebrains?

$$
f(a \cdot b)=0
$$

$\Rightarrow a \cdot b$ algebraic $\quad \frac{1}{\pi} \cdot \pi=1$
use base poly to get new poly w/ presinibel wows

$$
(x-a)(x-b)(x-c) \longrightarrow x^{3}+A x^{2}+B x+C
$$

or

$$
P(x)=x^{2}-7 x+12
$$

kills $x=3,4$
want poly that $\sqrt[5]{3}$

$$
\begin{aligned}
& P\left(x^{5}\right)=\left(x^{5}\right)^{2}-7 x^{5}+12 \\
& g(x)=x^{10}-7 x^{5}+12 \\
& g(\sqrt[5]{3})=3^{2}-7 \cdot 3+12=\text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { kills } 3 \\
& f(x)=x^{2}-7 x+12 \\
& f(3)=0 \\
& \sqrt[3]{3} \Leftrightarrow f\left(x^{3}\right)=x^{6}-7 x^{3}+12
\end{aligned}
$$

\#9/ c algebraic $\Longrightarrow \frac{1}{2} C$ is too.
Ex: $\quad P(x)=x+1$.
Find poly sit. $\frac{1}{\partial}(-1)$ is a root set $p(x)=0$
solve

$$
\left|\begin{array}{l}
x=-1 \\
\text { root }
\end{array}\right|
$$

$$
Q(x)=P(2 x)=2 x+1
$$

$$
\text { kills }-\frac{1}{2} \text { ! }
$$

c algebras \Longrightarrow
there is some poly:

$$
P(x)=\sum_{i=1}^{n} a_{i} x^{i}=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

we know

$$
\begin{aligned}
& \text { We know } \\
& P(c)=\sum_{i=1}^{n} a_{i}(c)^{i}=0 \\
& Q(x)=P(\partial x)=\left\{\sum_{i=1}^{n} a_{i}(\partial x)^{i}=\sum_{i=1}^{n} a_{i} \partial^{i} x^{i}=\sum_{i=1}^{n} \partial^{i} a_{i} x^{i}\right.
\end{aligned}
$$

this kills $\frac{1}{2} c \quad b / c$

$$
Q\left(\frac{1}{2} c\right)=\sum_{i=1}^{n} a_{i}\left(2\left(\frac{1}{2} c\right)\right)^{i}=\underbrace{\sum_{i=1}^{n} a_{i} c^{i}}_{=D}=
$$

11) c alg $\Longrightarrow 1+c$

- $P(x)=x^{2}$, has $x=0$ as a root

$$
Q(x)=P(x-1)
$$

10\% algebraic $\Longrightarrow \frac{1}{c}$ algebraic
The idea: $x^{2}-7 x+12$ has $x=3,4$ as roots
So $x=3$ is algebraic. So

$$
P(3)=3^{2}-7 \cdot 3+12=0
$$

$\begin{aligned}\left.\text { multi. by }\left(\frac{1}{3}\right)^{2 t \text { degree }}\right\} & \left(\frac{1}{3}\right)^{2}\left[3^{2}-7.3+12\right]=\left(\frac{1}{3}\right)^{2} \cdot(1) \\ & 1-7\left(\frac{1}{3}\right)+12\left(\frac{1}{3}\right)^{2}=0\end{aligned}$
A poly that kails $\frac{1}{3}$ is

Try to make this general c alg $\Rightarrow \sum_{i=1}^{n} a_{i} x^{i}$ is a poly $\sum_{i=1}^{n} a_{i} c^{i}=0$ \uparrow

$$
x^{2}-7 x+12
$$

$$
3^{2}-7 \cdot 3+12=0
$$

Now multi. by $\left(\frac{1}{c}\right)^{n}$
constant, pass across Σ, get new term
\#10/ If c is algebraic then $1 / c$ is algebraic too $(c \neq 0)$
since \#7 relates, let's examine A
$\Rightarrow c$ is zens of poly. $P(x)$
\Rightarrow The is some $\rho(x)=\sum_{k=0}^{n} a_{k} x^{k}$

$$
P(c)=\sum_{k=0}^{n} a_{k} c^{k}=0
$$

for whiz l

$$
\text { es. } c=2 \text {. }
$$

$$
P(x)=x^{2}-5 x+6
$$

$$
P(2)=2^{2}-5(2)+6=0
$$

Q: Can 1 build new pols: $Q(x)$ from $P(x)$ sit.

$$
Q(1 / 2)=0 .
$$

$$
\begin{array}{r}
\left(\frac{1}{2^{2}}\right)\left(2^{2}-5(2)+6\right)=(0)\left(\frac{1}{2^{2}}\right)= \\
0=\frac{2^{2}}{2^{2}}-\frac{5 \cdot 2}{2^{2}}+\frac{6}{2^{2}}=1-5\left(\frac{1}{2}\right)+6\left(\frac{1}{22}\right)
\end{array}
$$

because I can $=\left(\frac{1}{2}\right)^{12} \lambda_{\text {doge }}$
this eg in
suggests the answers: $0=1-5\left(\frac{1}{2}\right)+6\left(\frac{1}{2}\right)^{2}$

$$
\begin{aligned}
& \text { suggests the answer: } \\
& Q(x)=1-5(x)+6(x)^{2} \text { or } 6 x^{2}-5 x+1=Q(x) \text { }
\end{aligned}
$$

In general gorey detail:
assunstorn of c being algebraic implies:

$$
\begin{aligned}
&(5 x) \lim _{h \rightarrow 0} f(h) \\
&=\lim _{h \rightarrow 0} 5 x \cdot f(h)
\end{aligned}
$$

$$
\begin{aligned}
& P(c)=\sum_{k=0}^{n} a_{k} c^{k}=0 \\
& \text { mull: } \\
& \left(\frac{1}{c}\right)^{n}=\left(c^{-1}\right)^{n}=c^{-n} \\
& C^{-1(n-k)}= \\
& c^{a \cdot b}=\left(c^{a}\right)^{b} \\
& \text { suggests } \\
& \text { What } \text { the plunomid } \\
& \text { should be } \\
& \text { that kills } \\
& -\sum_{k=0}^{n} a_{h} c^{k-n} \\
& \sum_{k=0}^{n} a_{k} c^{-1(n-k)}
\end{aligned}
$$

Transcendent \#'s: Defin: rot algebraic
, not the solution to

$$
\begin{aligned}
& \sum_{k=0}^{n} a_{h} x^{n}=0 \\
& a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \\
& a_{i} \in \mathbb{Z} \\
& \quad \text { integers }
\end{aligned}
$$

(\#)
12
Suppose $\pi+1$ is algebraic.
In \# 11 we showed c being algebraic implied $c+1$ is Lo this technique can be used to show $c+r$ is algebraic

Bu \# 11π must be algebraic sin 6 for ans π is an additive integer diff than $\pi+1$.
\#11) c is clgebrini.
$1+c$ is too

$$
\begin{aligned}
\text { Ex } & f(x)= \\
g(x)=f(x-4) & =(x-4)^{2}-2(x-4)+1 \\
& =x^{2}-8 x+16-2 x+8+1 \\
g(x) & =x^{2}-10 x+25 \\
& (5,0) \\
& (5)=25-50+25=0
\end{aligned}
$$

show
$13+c$ is al brail
\#15/
Prop. 1.29 is the first two use Parallel Postulate
Prop. 1.31 doesn't. Why didn't Euclid more it in front of 1.29?

1. 1.31 uses 1.27, and 1.28/1.29 make move sense to come immectially after 1.27 than 1.31 - because 1.28 is essentially the sane 1.29 contains converses to 1.28/1.29.

Proclus rightly remarks (p. 376, 14-20) that, as it is implied in $\mathbf{1 .} 12$ that only one perpendicular can be drawn to a straight line from an external point, so here it is implied that only one straight line can be drawn through a point parallel to a given straight line. The construction, be it observed, depends only upon 1. 27, and might therefore have come directly after that proposition. Why then did Euclid postpone it until after 1. 29 and 1. 30? Presumably because he considered it necessary, before giving the construction, to place beyond all doubt the fact that only one such parallel can be drawn. Proclus infers this fact from 1.30 ; for, he says, if two straight lines could be drawn through one and the same point parallel to the same straight line, the two straight lines would be parallel, though intersecting at the given point : which is impossible. I think it is a fair inference that Euclid would have considered it necessary to justify the assumption that only one parallel can be drawn by some such argument, and that he deliberately determined that his own assumption was more appropriate to be made the subject of a Postulate than the assumption of the uniqueness of the parallel.

why delay $\frac{1}{2}$ not immediatly follow 1.27?

- First needed to "imply" that only ore parallel exists.

Prop. 30 implies uniqueness of parallels (because it uses Prop. 29 , and thus I.V.)
Eudid wanted to justify the assumption that parallels were unique, first.

- Before constructing the parallel, he wanted to make sure only 1 could be drawn.
- So le did so. But doing so requires I.V. because wo it multiple exists (2000 years later).
\#27 = could have been used as proo of $工 .47$
(1) \#-20-uses SAS, which comes before Pyth. Thm proot. So this OK.
(2) \#21- supplements of right an right - this is the definition of or $\begin{aligned} & \text { angles } \\ & \text { a right angle }\end{aligned}$ but this one requires the area of a trapezoid (see below)
(3) \#22, clearly semilar $\Delta^{\prime} s$ in (a)
(4) \#23 semitavity
(5) \#2y similar triangles
(6) \#25 book IV about civdes
(7) \#26 "uses SAS, (this "could" have been usece by Eucird, but the proof of the area of the trapezoid would have had to be a part of it, making sonewhat awloward.)

(i) LHS $=c^{2}+b^{2}+2 b c$

(iii) RHS $=a^{2}+2 b c$
(iv) $\sin \theta$ LHS $=$ RHS, $a^{2}+2 b c=b^{2}+c^{2}+2 b c$ so $a^{2}=b^{2}+c^{2}$.

21. This proof is due to the $12^{\text {th }}$ century Hindu mathematician Bhaskara:

Link to MAA article on Garfield

$$
=b^{2}+c^{2}
$$

26. The last proof here is due to Congressman (later President) James A. Garfield of Ohio, who published it in the New England Journal of Education in 1876.
the sum of the bases.
(b) Now consider right $\triangle \mathrm{BAC}$. Extend AB to D so that $\mathrm{BD}=b$ and construct $\mathrm{DE} \perp \mathrm{AD}$ at D ,
with $\mathrm{DE}=c$. Draw BE and CE . With this out of the way, prove that $\triangle \mathrm{BAC} \cong \triangle \mathrm{EDB}$.

$R=$ right angle
(i) $<c a+<a b+R=2 R$ $\Rightarrow<c a+<a b=R$
each corner of large quad. is $<c a+<a b$ so it's a square (side $=a$)
(ii) supplement of right angle is right so inside angles are right. and sides are $b-c \therefore$ square
(iii) $a^{2}=(b-c)^{2}+2 b c$

$$
=b^{2}-2 b c+c^{2}+2 b c
$$

Ar ca $=\frac{1}{2}\left(b_{2}-b_{1}\right) h=\frac{1}{2} b_{2} h-\frac{1}{2} b_{1} h$
(a)

(b) $2 R=\beta+\theta+\gamma$ since $S A S \Rightarrow \angle E B D=\gamma$

这. $32 \Rightarrow R+\beta+\gamma=2 R$ so $\beta+\gamma=R$ so $\theta=R$
(c) $\left.\frac{(b+c)(c+b)}{2}=\frac{1}{2} b c+\frac{1}{2} a^{2}+\frac{1}{2} b c\right\} \begin{gathered}b^{2}+2 b c+c^{2}=b c+a^{2}+b c \\ \text { so } a^{2}=b^{2}+c^{2}\end{gathered}$
$\left(\begin{array}{l}\text { area of } \\ \text { trap formula) }\end{array}\right.$
22. This proof of the Pythagorean Theorem is usually credited to the $17^{\text {th }}$ century British mathematician John Wallis, although it surely had been discovered prior to him. It is regarded as the shortest proof of all.

$$
\text { (ii) } \frac{b}{c D}=\frac{a}{b}
$$

$a \cdot C D+a \cdot B D$
$=a(a-B D)+a \cdot B D=a^{2} \quad a^{2}=b^{2}+c^{2}$

$$
\left.\begin{array}{rl}
\triangle A B D: B+R+\theta & =2 R \\
\text { so } B+\theta & =R \\
\theta & =R-B \\
\triangle A C D: \gamma+R+\delta & =2 R \\
\delta & =R-\gamma \\
\triangle A B C: B+\gamma+R & =2 R \\
B & =R-\gamma
\end{array}\right\} \theta=\gamma
$$

